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 A MULTIVARIATE CENTRAL LIMIT THEOREM FOR INDENTED QUANTUM  
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Abstract.We prove a multivariate CLT in T.Hasebe’s indented probability theory, by 
generalizing our proofs for the CLT in M. Bożejko and R. Speicher’s  c-free probability theory, N. 
Muraki and Y.G.Lu’s (anti-)monotone probability theory, and Hasebe’s c-(anti-)monotone probability 
theory, and extending the combinatorial method exposed by F. Hiai and D. Petz [10], or A. Nica and 
R. Speicher [28], for the CLT in the setting of D.-V. Voiculescu’s free probability theory. The joint 
moments of the corresponding quantum Gaussian family are described by an Isserlis-Wick type 
formula generalizing  the ones derived in all these previous cases. 

Key words: (ordered) non-crossing partition, (anti-)monotone partition, quantum probability 

space, non-commutative distribution, , , -indentedness,  , -orderedness, Isserlis-Wick type 

formulae. 

 

1. INTRODUCTION  

 
D.-V. Voiculescu’s seminal free probability theory (see, e.g., [33-35], but also [10,28] for further 

information) strongly motivated fundamental descoveries in the quantum probability (: QP) domain and its 
related fields. We send to, e.g.,  [5, 23, 29] (but also [11]), as an introduction into this domain. We remind, 
R. Speicher [31] and N. Muraki [26, 27] demonstrated there exist only five fundamental QP theories based 
on a quantum stochastic independence notion (involving a single state) emerging from an associative product 
of quantum probability spaces which possibly depends on the order of its factors. These five theories are:  R. 
L. Hudson and K. R. Parthasarathy’s Boson or Fermion probability theory, the free probability theory, 
Speicher and W. von Waldenfels’ Boolean probability theory – corresponding to the tensor, free and Boolean 
product, which are not order-dependent; and, respectively, Muraki [24, 25] and Y.G.Lu’s [21, 22] (anti-) 
monotone probability theory – corresponding to the (anti-)monotone product, which is order-dependent. 

M. Bożejko and Speicher [3] unified the free and Boolean probability theory via their c-free 
independence concept (referring to a pair of states) arising from the c-free product [2, 3] of quantum 
probability spaces, which is associative, non-dependent on the order of its factors, and transfers its 
associativity to the free and Boolean products. Similarly, T. Hasebe [6, 7] unified the (anti-)monotone and 
Boolean probability theory by the c-(anti-)monotone independence notion (with respect to two states) 
emerging from his c-(anti-) monotone product; this being associative, dependent on the order of its factors, 
and transferring its associativity to the (anti-)monotone and Boolean products. 

Moreover, by combining some c-free products, Hasebe [8] introduced an associative product for 
quantum probability spaces endowed with triples of states, in (*-) algebraic frame, initially named the 
indented product, which generalizes the (c-)free, (c-)(anti-) monotone and Boolean products, depends on the 
order of its factors and transfers its associativity to any of these seven aforementioned products. 
Consequently, the indented independence arising from this product is order-dependent: if  1a  and 2a  are 

indentedly independent random variables, it does not imply that 2a  and 1a  are, too.  
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Hasebe’s indented probability theory (see [8] and the references therein) is an interesting and 
promising research topic generalizing and unifying the free, (anti-)monotone and Boolean probability theory 
and, moreover, the c-free and c-(anti-)monotone probability theory. Hasebe proved a univariate CLT in this 
frame for identically distributed random variables, with a Kesten  (more generally, free Meixner) distribution 
(see, e.g., [11]) triple, as limit. In analogy, again, to Bożejko-Speicher theory, Muraki-Lu  theory, and 
Hasebe’s  c-(anti-)monotone probability theory, the combinatorial structure of the indented independence is 
governed by the set of  all (the ordered) non-crossing partitions, but it must distinguish not only between the 
outer and the inner blocks of such a partition, but also among  its inner blocks according to their nearest 
covers.  

In the present Note, we prove the multivariate CLT for , , -indented (in particular,  , -ordered) 
random variables in Hasebe’s theory, by generalizing, with respect to additional states, our elementary proofs 
from [15-17] of the CLT for , -free, (anti-)monotone independent, and , -(anti-)monotone independent 
random variables, in Bożejko-Speicher c-free probability theory,  Muraki-Lu (anti-)monotone probability 
theory, and, respectively, Hasebe’s [6, 7] c-(anti-)monotone probability theory, and extending the 
combinatorial moment method presented in [10] or [28] for the free CLT. Thus we derive an Isserlis-Wick 
type formula describing the joint moments of the corresponding multivariate quantum central limit 
distribution which generalizes all those formulae of this type obtained in these aforementioned cases.  The 
setting is essentially that from [15, 17], but the simple random variables are this time more complicated, 
because the quantum probability space is endowed with a triple of states  , ,   and the peaks and bottoms 
are equally involved. Now, we focus on the occurrence of all these local extrema given by interval blocks in 
the ordered partition associated to a product of  , -centered , , -indentedly independent random 
variables; via the weak independence in the sense of [4,12] once again. The alternative proof by cumulants is 
shorter. Other limit theorems can be proved. We will expose these elsewhere. 

2. PRELIMINARIES 

 
We repeat for the reader’s convenience some well-known general information as in, e.g., [1, 8,11,15-

17, 20,25-28], instead of sending directly to these references. (We abbreviate ’such that’ by ’s.t.’, and ’with 
respect to’ by ’w.r.t’).  Let S  be a finite totally ordered set (w.r.t. < ). Denote by ( )P S  the partitions of S ; 

call blocks the non-empty subsets defining a partition. If S is a disjoint union of non-void subsets iS , and 

( )P S   s. t.  = i , with some ( )i iP S  , we write  = i . If, for instance, S = 1{ ,..., }ns s , with 

1 ... ns s  , we say ( )P S   is irreducible, when   does not factorize as  1 2  , with ( )i iP S  , 

where 1S = 1{ ,..., }ps s  and 2S = 1{ ,..., }p ns s  are disjoint sets.We call pairing a partition in which every block 

has exactly two elements. For ,k l S , denote by ~k l  the fact that k  and l  belong to the same block of 

( )P S  . Recall that a partition   is called crossing if there are  1 1 2 2k l k l    in S  s.t. 

1 2~k k  1 2~l l ; otherwise,   is non-crossing. When   is non-crossing, and V is a block of  , say 

V is inner, if there exists another block in   that covers V : i.e., there exist  a block W of  , and  ,k l W , 

s. t.  k v l  , for all v V , denoting this by W V ; otherwise, say V is outer. For an inner block V  , 
the nearest cover in   of V  is the block W   covering V , for which there is no other block W   s.t. 
W W V . Denote by ( )c V  the nearest cover in   of V . Denote by ( ) , and ( )   the inner, and,  

respectively, outer blocks of  . Recall that a non-crossing partition   is called an interval partition if 
( ) is empty. Denote by ( )NC S , 2 ( )P S , 2 ( )NC S  and 2 ( )I S  the non-crossing partitions, the pairings, the 

non-crossing pairings, and the interval pairings of S , respectively.  
An ordered (coloured) partition of S  is a partition  = 1( ,..., )rP P  of S  endowed with an ordering 

(colouring) (: a permutation) of its blocks [20, 26]; s being the order (colour) of the block sP . If ( )P S  , 
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there exist !  ways to order (colour)  , where   is the number of blocks of  . We symbol the block as 

P  when its order (colour) is not specified. Denote by ( )OP S  the ordered (coloured) partitions of S . 

Sometimes, we list together some partitions  = 1( ,..., )rP P ( )OP S  and denote them as 

1
{ ,..., }

rs sP P ( )OP S , by putting their orders (colours) 11 ,..., rs s r    into a partition of the set {1,..., }r . 

Denote by 1,2 ( )OP S  the ordered (coloured) partitions of S  for which every block has at most two elements, 

and by ( )ONC S  the ordered (coloured) non-crossing partitions of S . 

 For a partition  = 1( ,..., )rP P ( )ONC S , denote by 1( )I   and 2 ( )I    the set of the order-reflecting, 

respectively, order-reversing  inner blocks in   (see, e.g. [8]); i.e., 

1( )I  :={ ;lP   the pair k lP P is order-reflecting (: )k l if ( )}k lP c P , and  

2 ( )I  :={ ;lP   the pair k lP P is order-reversing (: )k l if ( )}k lP c P = 1( ) \ ( )I  . 

 A monotone partition [20, 26] of S  is a partition  = 1( ,..., )rP P ( )ONC S  s.t. its ordering 

(colouring) is order-reflecting: for any pair of blocks k lP P  in  , it holds  k l . If ( )ONC S  is not 

monotone, we say   is non-monotone. We denote by 2 ( )M S the monotone pairings of S .  

An anti-monotone partition [20, 26] of S  is a partition  = 1( ,..., )rP P ( )ONC S  s.t. its ordering 

(colouring) is order-reversing: for any pair of blocks k lP P  in  , it holds  k l . If ( )ONC S  is not 

anti-monotone, we say   is non-anti-monotone. We denote by 2 ( )AM S the anti-monotone pairings of S .  

When S  has m elements, abbreviate by 2 ( )P m , 2 ( )NC m , 2 ( )I m , ( )OP m , 2 ( )OP m , 2 ( )ONC m , 

2 ( )M m , and 2 ( )AM m  the pairings, non-crossing pairings, interval pairings, the ordered (coloured) 

partitions, pairings, non-crossing pairings, the monotone and anti-monotone pairings of S , respectively; and  

1,2 ( )OP S by 1,2 ( )OP m .The set 2 ( )P m  is empty if m  is odd. Recall that each non-crossing partition of 

{1,..., }m  has at least an interval; i.e., a block of consecutive indices which may be a singleton (:block having 

a single element). Recall the cardinality of 2 (2 )P p  or 2 (2 )NC p  or 2 (2 )M p (and also, 2 (2 )AM p ) equals 

the corresponding moment of a standard Gauss, respectively, semi-circular Wigner or (by a factor of !p ) 

arcsine distribution; i.e., (2 )!!p , respectively the Catalan number : (2 )! !( 1)!pc p p p    or  (2 )!!p , too.  

We consider a  *- algebra as a (complex)  associative algebra with an involution * (i.e. a conjugate 
linear anti-automorphism). A linear functional   of a  *- algebra A  is positive if ( ) 0a a   , for all 

a A . If  A   is  a   (*-) algebra, and   is a  (positive) linear functional of A , we consider the unitization 

of A  defined by : 1A A    , and the unitization of  , denoted  , given by ( 1 )a    := ( )a  , for 

any  , a A . Let A  be a  (*-) algebra, and  , ,   be three states; i.e., linear (positive) functionals 

of A . We  interpret ( , )A  , ),( A  or ( , , , )A     as quantum  (*-) probability spaces, and the elements of 

A  as quantum random variables in view of  [33, 28]. When A  has a unit 1 and the linear functionals 
involved    are unital, i.e., (1)  = 1, we say the quantum probability space is unital. Otherwise,  we say it 

is non-unital. Let I  be an index set,  ,i i I   and  ,i i I    be the (*-) algebra with, 

respectively, without, a unit, freely generated by the complex field   and the non-commuting 
indeterminates , .i i I   Let ( , )A   be a quantum  (*-) probability space, and ( )i i Ia a   be such a random 

vector with all (self-adjoint) ia A . The non-commutative joint distribution of a  w.r.t.   is aa  : , 

where :a ,i i I A    is the unique  unital (*-) homomorphism s.t.  ( )a i ia   , if ( , )A  is unital, 
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but :a ,i i I A     is the unique  (*-) homomorphism s.t.  ( )a i ia   , if ( , )A  is not unital. The 

scalars 
1

( ... )
ji ia a  are viewed as the joint moments of a  w.r.t.  .  

If ( )i
N N i Ia a   and ( )i i Ia a  are random vectors in some quantum  probability spaces ( , )N NA  and 

( , )A  , we say ( )N Na  converges in distribution to a , denoting distr
Na a , if for all 1j  , and all 

1,..., ji i I ,  1

1
lim ( ... ) ( ... )j

j

ii
N N N i i

N
a a a a 


 . When a A  and ( ) 0a  , say a  is centered w.r.t.  , or 

 -centered.  When a  is centered  w.r.t. , ,   , or w.r.t. ,  , say it is  , ,   -centered, respectively 

,  -centered. For A  unital and a A  (but, generally, ( ) 0a  ),  we center a  w.r.t.  , if  we 

decompose ( ) 1a a a     via the centering : ( ) 1a a a   of a  w.r.t.   (see, e.g., [28, Notation 

5.14]); 1 being here  the unit of A . Thus, kera  . 

If I is totally ordered, 1,..., ni i I and 1{ ,..., }ni i = 1{ ,..., }rk k with 1 ... rk k  , the ordered (coloured) 

partition corresponding to jj i  is 1( ,..., )rP P ( )OP n  given by { ; }j s jP s i k  [20]. When  iA A , 

Ii  are subalgebras, and 1 nw a a A    is a random variable, s.t. all 
jj ia A , for 1,..., ni i I , the 

ordered (coloured) partition associated to w is that corresponding  to jj i . We  say w  is crossing or non-

crossing when this partition is crossing or non-crossing. 
 Let ( , , , )A     be a unital quantum probability space, let I be a totally ordered set, let iA A , Ii  

be unital subalgebras, and 1 nw a a A    be a random variable, s.t. all 
jj ia A with  1,..., ni i I . When 

there exists  2 p n   with 1 1p p pi i i    (respectively, 1 1p p pi i i   ), we say jj i  has pi  as  peak 

(respectively, bottom), and pa  is a peak (respectively, a bottom) in w . We say sometimes a peak is a local 

extremum of type 1, and a bottom is a local extremum of type 2. When jj i has such local extrema, we 

say pa  is the left, respectively, right local extremum in w , if p  is the minimum, respectively, the maximum 

of the set 1 1 1 1{2 1; }s s s s s ss n i i i or i i i          .  

We say the local extremum pa  is centered adequately to its type (for short, centered adequately) when 

pa  is  -centered, if it is a peak; respectively,  -centered, if it is a bottom. 

 We center the local extremum pa  adequately to its type (for short, center adequately) i.e.,   

pa = 1p pb a    , where pb   and :pa = 1p pa b  , when we center pa  w.r.t.  , if it is a peak; 

respectively w.r.t.  , if it is a bottom. In this case, we call pa  the adequate centering of pa , and name the  

random variables 1 1 1p p na a a a      and 1 1 1p p p na a a a a    the subword obtained from w  by excluding 

and, respectively, by centering pa  adequately to its type.  

If 1 nw a a A   , with 
kk ia A  and  1,..., ni i I , as above, has exactly k  local extrema 1,...,ke e , 

then we may expres 1 1k kw ue v e v  ,  with jvu,  as reduced words, being void or arbitrary products of 

jj ia A ; but jvu,  as non-void factors of w  have no local extrema not centered adequately. By centering 

every je  adequately to its type, i.e.,   je = 1j jb e    , where jb   is given by :jb  ( )je , if je  is of type 

1, but :jb  ( )je , if je  is of type 2, and :je = 1j je b  , we  expand w  in the  form below and name it the 

pre-centered form of w : 

      ( )

1

k
j

j
j

w b w w


   , where 1 1 1 1: k k k kw ue v e v e v      ; (1)
2 2 1: k kw ue v e v v    ; 
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     ( )
1 1 1 1 1 1:j

k k j j j j jw ue v e v v e v e v       , for 12  kj ; and ( )
1 1 1 1:k

k k kw uv e v e v    . 

 
We say 1 nw a a A   , with 

kk ia A and 1,..., ni i I , is a simple random variable in ( , , , )A      

if w  is reduced (i.e., kk i  has not intervals: niii  ...21 ) , calling n  the length of w , and w  has no 

local extrema or w  has only local extrema centered adequately to their types. 
 
The next definition concerning the notion of  , , -indented independence (: shortly,  , , -

indentedness) comes from [8], being inspired by [15-17]. If   , say  , -ordered independence (shortly,  

 , - orderedness) instead of  , , -indented independence. 

 
Definition 2.1 Let ( , , , )A     be a unital quantum probability space as above, and 

(1 ) iA A  , Ii  be  unital subalgebras. The family IiiA )(  is  , , -indentedly independent (or 

 , , -indented, for short), if 1( )na a   0 whenever 1n  , 1 ... ni i  , all 
kk ia A , ( ) 0na  , and 

( ) 0pa   if pa  is a peak , but ( ) 0pa   if pa  is a bottom, for 2 p n   . If iA S , Ii  are subsets, 

then ( )i i IS  is  , , -indentedly independent, if IiiA )( is  , , -indentedly independent, iA  being  the  

unital subalgebra of A  generated by iS .  

In particular, Hasebe’s ordered free independence/ordered-freeness w.r.t. ( ,  ) according to [8], 

involves both the  , , -indentedness and the  , , -indentedness; i.e., the  , -orderedness and the 

 , , - indentedness. Hasebe’s indented independence w.r.t. ( , ,  ), considered in [8], involves both 

the ordered free independence/ ordered-freeness w.r.t. ( ,  ), and the  , , -indentedness. 

Hasebe presented the conditions ii)-iii) below as being equivalent to the  , , -indentedness (see [8, 
Def.2.6 and Prop. 2.12]. 

Proposition 2.2 Let ( , , , )A     be a unital quantum probability space as above, and 

(1 ) iA A  , Ii  be  unital subalgebras. The following are equivalent: 

i) IiiA )(  is  , , -indentedly independent; 

ii) 1( )na a   0 whenever 1n  , 1 ... ni i  , all 
kk ia A , 1( ) 0a  , and ( ) 0pa   if pa  is a 

peak , but ( ) 0pa   if pa  is a bottom, for 2 p n   ; 

iii) 1( )na a   0 whenever 1n  , 1 ... ni i  , all 
kk ia A , 1( ) 0a  , and ( ) 0pa   if 1p pi i   , 

but ( ) 0pa   if 1p pi i  , for 2 p n   ; 

iv) 1( )na a   1( ) ( )na a   whenever 1n  , 1 ... ni i  , all 
kk ia A , and ( ) 0pa   if 

1p pi i   , but ( ) 0pa   if 1p pi i  , for 2 p n   .  

 
We could demonstrate the statements in this Note by iii) or iv), too; but we do not use these in the 

sequel. 
We add iv) above to clarify how the indented product of quantum probability spaces realizing the 

 , , -indentedness is a special case of the product presented in [4, 12]. (see  [8, Remark 2.9].) 

The notion of  , , -indentedness extends the notions of ( , -)freeness, ( , -)(anti-)monotone 
independence and Boolean independence. 

 
Remarks 2.3 1)The  , , -indentedness is the  , -freeness [15]; the  , , -indentedness (or 

the  , -orderedness) is Voiculescu’s freeness w.r.t.   [33-35, 1, 5, 10-17, 20, 28]. The conditionally free 
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(or c-free, for brevity) independence w.r.t. ( , ), considered in [2, 6-8,19],  involves both the  , -
freeness and the freeness w.r.t  . 

2) The  , , -indentedness generalizes the  , -(anti-)monotone independence [17] and the 
Boolean independence [32], too. The  , -(anti-)monotone independence is Muraki-Lu’s (anti-)monotone 

independence w.r.t.  [6-9, 11, 16, 17, 20-22, 24-27]. The conditionally monotone (or c-monotone, for 
brevity) independence w.r.t. ( , ), considered in [6-8,19], involves both the monotone independence w.r.t. 

 , and the  , - monotone independence.  
More exactly, the following hold true. 
Let ( , , )A    be an arbitrary quantum probability space, and iA A , Ii  be a family of  

subalgebras of A . Let ( , , , )A       and 1 iA A   , Ii  be the unital quantum probability space and, 

respectively, the family of unital subalgebras in this, consisting of the corresponding unitizations;  being 
the unitization of the functional 0  of A . 

If ( )i i IA 
  is  , , -indentedly independent in ( , , , )A      , then IiiA )(  is  , -monotone 

independent in ( , , )A   . 

If ( )i i IA 
  is  , , -indentedly independent in ( , , , )A      , then IiiA )(  is  , -anti-monotone 

independent in ( , , )A   . 

If ( )i i IA 
  is  , , -indentedly independent in ( , , , )A     , then IiiA )(  is Boolean independent in 

( , )A  . 
 
We prefer to maintain Hasebe’s initial denominations concerning his notions of three (two)-state 

quantum independence and product of quantum probability spaces realizing it. 
 

3. JOINT  MOMENTS  OF   , , -INDENTED  QUANTUM  RANDOM  VARIABLES 

In this section I will be a totally ordered set, ( , , , )A    will be a unital quantum probability space as 

before, and iA A , Ii  will  be a family of  , ,  -indentedly independent unital subalgebras of A .  

The following lemma will be used several times in the sequel.  
 
Lemma 3.1  Let 1 nw a a A    be reduced, s.t. every 

jij Aa  . 

1) If w  (: the map jj i ) has no local extrema, then  1( ) ( ) ( )nw a a    .  

2) If w  is a simple random variable in ( , , , )A    , and 1( ) 0a  (respectively ( ) 0na  ), then 

( ) 0w  .  
 
We observe ( )i i IA  is weakly independent in ( , )A   in the sense of [4,12]; remind the weak-

independence has the meaning below.  
 
Definition 3.2 Let ( , )B   be a unital quantum probability space as above  and iB B , Ii  be unital 

subalgebras. The family ( )i i IB   is weakly independent in ( , )B  ,  if 1( ... )nx x  1 1( ... ) ( ... )p p nx x x x   , 

for all n > 1p  , all ji I , all 
jj ix B , s.t. the sets },...,{ 1 pii  and },...,{ 1 np ii  are disjoint. If iB S , Ii  

are subsets, then ( )i i IS  is weakly independent, if ( )i i IB  is weakly independent; iB  being  the  unital 

subalgebra of B  generated by iS .  
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The second lemma extends [16, Lemma 3.2 ] and [17, Lemma 3.3].  
Lemma 3.3 ( )i i IA  is weakly independent in ( , )A  ; i.e., 

1( )na a   1 1( ) ( )p p na a a a        , for all n > 1p  , all ji I , all 
jj ia A , s.t. the sets 

},...,{ 1 pii  and },...,{ 1 np ii  are disjoint. 

Proof. It suffices to suppose niii  ...21 . If jj i  has no local extrema, the statement follows 

from Lemma 3.1. Otherwise, for 3n , it results by centering the single local extremum 2a  adequately to its 

type, via  Lemma 3.1 and the assertion for 2n  .  
Let 3n  . Suppose the statement true for any 1 sa a A    having local extrema and the length s n . 

Verify it for 1nw a a A    as below to  conclude by induction. 

Consider the case when 1pa   and pa  are not local extrema; and thus 1 1n p pw a xa a ya  with 

r r q qx ue v e v  , and 1 1 1 1q qy ve v e v    where 1r q  ; , , lu v v  are void or arbitrary products of 

jj ia A ; and 1,..., ,...,q re e e  are all the local extrema in w . But , , lu v v  as non-void factors in x  or y  have 

no local extrema. 

Center 1a  w.r.t.   and each local extremum je  adequately to its type: 1a = 11b a   , and 

je = 1j jb e   , with scalars 1: ( ),b a  and jb  . Then expand 
1

( )

1

q
l

l
l

y b y y




    in its pre-centered 

form (with ( )ly and y  as in Preliminaries), to get 

 1n p pw ba xa a y +
1

( )
1 1

1

q
l

l n p p
l

b a xa a y a




  + 1 1n p pa xa a y a

  . 

By expanding also ( )
r

k
k

k q

x b x x


    in its pre-centered form (with corresponding ( )kx and x  defined 

as in Preliminaries), remark the term  1 1n p pa xa a y a
  = ( )

1 1

r
k

k n p p
k q

b a x a a y a

   + 1 1n p pa x a a y a

    belongs to 

the kernel of  ; due to the inductive hypothesis and  Lemma 3.1, for any term ( )
1 1

k
n p pa x a a y a

  , having the 

length inferior to n , and to Lemma 3.1, too, for the term of maximum length 1 1n p pa x a a y a
    which is a 

simple random variable in ( , , , )A    . 

Since every term ( )
1 1

l
n p pa xa a y a

  has the length inferior to n , the inductive hypothesis implies then     

1( ) ( )[ ( )n p pw a xa b a y   
1

( )
1

1

( )]
q

l
p l

l

a b y a



  = 1( )[ ( )n p pa xa ba y   1( ( ) )]pa y y a    = 

= 1 1( ) ( )n p pa xa a ya  , hence the statement for n ; finally, because 1pa y a  is a simple random 

variable in ( , , , )A     being in the kernel of  , by Lemma 3.1, again. 

The other cases (: when  1pa   and pa  are both local extrema, or only one of them is a local extremum, 

in w ), are variations on the theme above. We let this exercise to the reader.   
   
For 1 nw a a A    s.t. every 

jij Aa  , we say w  has ka  as singleton when j ki i , for any j k .                    

The following statement generalizes [15, Lemma 3.2], [16, Lemma 3.3], and [17, Lemma 3.4]. 
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Lemma 3.4 Let 1 nw a a A   , s.t. every 
jij Aa  , and w has a singleton ka  which is  , ,  -

centered. Then ( ) 0w  . 

Proof. It suffices to suppose w  is reduced. If  1,k n , the assertion follows by the weak-

independence (i.e., Lemma 3.3), and the  -centeredness of ka . It remains to consider 12  nk . If 

jj i  has no local extrema, Lemma 3.1 and the  -centeredness of ka , again, imply ( )w = 

= 1( ) ( ) ( ) 0k na a a     , for all 3n  . 

Otherwise, for 3n , the single local extremum ka  being centered adequately to its type, the assertion 

results by  Lemma 3.1, via the centering of na  w.r.t.   and the  -centeredness of ka , again.     

Let 3n  . Suppose the statement valid for any 1 ra a A     having local extrema and the length 

nr  ; check it for 1 nw a a A   , as below, to conclude by induction. 

Consider w  has exactly p  local extrema 1,..., pe e  (including, possibly, ka ). 

Thus, we may express w = 1 na xa  with 1 1p px ue v e v  , where , lu v  are void or arbitrary products of 

jj ia A . But , lu v  as non-void factors in x  have no local extrema. 

Center na  w.r.t.   , i.e., na = 1n nb a   , where : ( )n nb a , and each local extremum je  adequately 

to its type (: je = 1j jb e   , with scalars jb  ), and develop then x  in the pre-centered form 

( )

1

p
j

j
j

x b x x


   , to get w = 1 1n k nb a a a        + ( )
1 1

1

p
j

j n n
j

b a x a a x a


     (with  ( )jx and x  defined as in 

Preliminaries); where 1a x  and all the terms ( )
1

j
na x a  have the length inferior to n . 

It remains only to note (via, possibly, the ,  -centeredness of ka , if needed) the kernel of   

contains 1a x , each term ( )
1

j
na x a  (due to the induction hypothesis); and the term of maximum length 

1 na x a  , too, by  Lemma 3.1, as a simple random variable in ( , , , )A    . 

The combinatorial structure of the  , ,  -indentedness is more complicated than that of the ,  -
freeness [15] or the ,  -(anti-)monotone independence [17]; and the partitions involved in the lemmata 
below are now many more. However, with our approach,  their tratement is easy. 

We illustrate the next statement by the following classes of partitions j  in 1,2 ( )OP m  associated to 

1 r ma xc ya w .  

Examples 3.5 1) If 5m  , let 1 1 2 3((4) , (1,5) , (2,3) )   and 2 1 2 3((2,3) , (1,5) , (4) )   being ordered 

non-crossing, but non-(anti-)monotone. For each of them, the unique non-centered local extremum 
e :=

22 3 ia a A  arises, in the reduced form of w = 1 ma xca ,  from the interval block (2, 3)   as a peak, for 1 , 

and a bottom, for 2 ; denoting x := e , and c := 4a . The subwords obtained from w , by excluding or by 

centering e  adequately to its type, are both simple random variable in ( , , , )A    ; so,  ( )w  0, for both 

j , by Lemma 3.1. 

2) For 7m  , let   be any of the following ordered crossing partitions : 
i) {(2,3) ,(6) , (1,5) , (4, ) }s t u vm , , {1, 2}s t , , {3, 4}u v ; {(2,3) ,(6) , (1,5) , (4, ) }s t u vm , {1, 4}s t , 

, {2,3}u v ;{(1,5) , (4, ) (2,3) ,(6) }u v s tm , , {1,2}u v , , {3,4}s t ; 

ii) 1 2{(1,6) , (4) , (2,3) , (5, ) }s tm , , {3,4}s t ;{(2,3) ,(5, ) , (1,6) , (4) }s t u vm , , {1, 2}s t , , {3, 4}u v ; 

1 2 3 4((4) , (5, ) , (1,6) , (2,3) )m , 1 2 3 4((2,3) , (1,6) ,(5, ) , (4) )m ; 
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For each of them, the unique non-centered local extremum e :=
22 3 ia a A  arises, in the reduced form of 

w = 1 ma xcya , from the interval block (2, 3)  . The subwords obtained from w , by excluding or by centering 

e  adequately to its type, are both simple random variable in ( , , , )A    ; so,  ( )w  0, by Lemma 3.1. 

3) For 7m  , let   be any of the ordered partitions listed below: 
iii) {(3,4) ,(6) , (1,5) , (2, ) }s t u vm , , {1, 4}s t , , {2,3}u v ;{(3,4) ,(6) , (1,5) , (2, ) }s t u vm , {1, 2}s t , 

, {3, 4}u v ;{(1,5) , (2, ) , (3,4) , (6) }u v s tm , , {1,2}u v , , {3,4}s t ; 

iv) {(3,4) ,(1,6) , (2, ) , (5) }s t u vm , {1, 2}s t , , {3, 4}u v ;{(2, ) , (5) , (3,4) , (1,6) }u v s tm , {1,2}u v , 

, {3,4}s t ; 1 2 3 4((3,4) , (2, ) ,(1,6) ,(5) )m , 1 2 3 4((5) , (1,6) , (2, ) , (3,4) )m ; 

v) 1 2{(5) , (2,6) , (3,4) ,(1, ) }s tm , {3,4}s t ; 3 4{(3,4) ,(1, ) , (2,6) , (5) }s tm , {1, 2}s t ; 

1 2{(3,4) , (2,6) , (1, ) ,(5) }s tm , {3,4}s t ; 3 4{(1, ) ,(5) , (2,6) , (3,4) }s tm , {1, 2}s t  [non-crossing]; 

These are crossing, except for v) which are non-(anti-)monotone non-crossing partitions.The unique 
non-centered local extremum e  arises, in the reduced form of w = 1 ma xcya , from the interval block (3, 4 )  . 

The subword obtained from w , by centering e , adequately to its type, is a simple random variable in 
( , , , )A    , in each case. The subword obtained from w , by excluding e , adequately to its type, is a 

simple random variable in ( , , , )A     in every crossing case; and, in the non-crossing cases its computation 

reduces to the above examples for 5m  . So,  ( )w  0, by Lemma 3.1, always. 

4) For 7m  , let   be any of the non-(anti-)monotone non-crossing partitions  
{(2,3) ,(1, ) ,(4,5) , (6) }s u v tm , , {1, 4}s t , , {2,3}u v . 

For each of them, the unique non-centered local extremum e :=
22 3 ia a A , in the reduced form of 

w = 1 ma xca , arises from the interval block (2, 3)  ; with 6:c a , 4 5:x ea a . But the interval block (4, 5)   

does not give a local extremum in w . The reduced subword obtained from w , by centering e , adequately to 
its type, is a simple random variable in ( , , , )A    , in each case. Moreover, the subword obtained from w , 

by excluding e , adequately to its type, is a simple random variable, too; except for 3u  , 2v  , 4t   and 
2u  , 3v  , 1t  , when its computation reduces to the examples before for 5m  , and 

44 5 ia a A  becomes 

a local extremum in the reduced form of this subword. Hence, 1( ) 0ma xca  , always, via Lemma 3.1. 

5). For 7m  , let   be any of the following ordered non-crossing partitions 
ix) 1 2{(6) , (2,5) , (3,4) ,(1, ) }s tm , , {3,4}s t ; 3 4{(3,4) ,(1, ) , (2,5) , (6) }s tm , , {1, 2}s t ; 

x) 3 4{(3,4) ,(6) , (2,5) , (1, ) }s t m , {1, 2}s t [anti-monotone]; 

xi) 1 4{(6) , (3,4) , (1, ) ,(2,5) }s tm , , {2,3}s t ; 1 3{(3,4) , (2,5) , (1, ) , (6) }s tm , {2,4}s t ;   

1 2 3 4((2,5) , (3,4) , (1, ) , (6) )m .  

These are non-(anti-)monotone, except for x) which are anti-monotone. For each of them, the unique 
non-centered local extremum e :=

33 4 ia a A  arises in the reduced form of w = 1 ma xca , from the interval 

block (3, 4 )  , with 2 5:x a ea ; and 6:c a  as peak or bottom, adequately centered. The reduced subword 

obtained from w , by centering e , adequately to its type, is a simple random variable in ( , , , )A    , in all 
cases. For  ix)-x) , the reduced subword obtained from w , by excluding e , adequately to its type, is a simple 
random variable in ( , , , )A    , too. In rest, the value of   corresponding to this subword reduces to the 

examples before for 5m  , again. Hence, 1( ) 0ma xca  , always, via Lemma 3.1.  

The next  statement generalizes [15, Lemmata 3.5-3.6 ]. 
Lemma 3.6 Let 1 mw a xcya A  , s.t.: 

11 iAa  ,
mim Aa  ; x  and y  are possibly void products of 

jij Aa   with ( )ja  ( ) 0ja  ; 
ri

c A is an adequately centered local extremum singleton in w; 

mcya (respectively, 1a xc ), under its reduced form, is a simple random variable in 



Valentin IONESCU 
 

10 

( , , , )A    ; ( ) 0ma  (respectively, 1( ) 0a  ); and the ordered partition associated to mxyaa1  is a 

pairing.  
Then ( ) 0w  , whenever mxyaa1  is crossing, or mii 1  and xy  is non-crossing or void. 

Proof. In light of Lemma 3.3 (the weak independence) and Lemma 3.1, it suffices to consider the 
ordered partition   associated to w  is irreducible, and x  has (under its reduced form) local extrema arising 
from some interval blocks of  . The second part of this lemma, when 1a xc is simple and 1( ) 0a  , results 

by an analogous argument. 
For 5m  , see Examples 3.5. For 7m  , it is easy to note there are involved only the ordered partitions 

 1,2 ( )OP m  1)-4) listed below, besides the partitions in Examples 3.5 before. 

1)  The crossing partitions 
{(1,6) , (4, ) , (2,3) , (5) }u v s tm , , {1, 2}s t , , {3, 4}u v ;{(2,3) ,(5) ,(1,6) , (4, ) }s t u vm , , {1, 4}s t , 

, {2,3}u v ; {(2,3) ,(5) ,(1,6) , (4, ) }s t u vm , , {1, 2}s t , , {3, 4}u v , and 

 the non-(anti-)monotone non-crossing partitions 
{(2,3) ,(5) ,(1, ) ,(4,6) }s t u vm , , {1, 2}s t , , {3, 4}u v ;{(2,3) ,(5) ,(1, ) ,(4,6) }s t u vm , , {3,4}s t , 

, {1,2}u v ?; 3 4{(1, ) ,(5) , (4,6) , (2,3) }s tm , , {1, 2}s t ; 1 2{(2,3) , (4,6) , (1, ) ,(5) }s tm , , {3,4}s t ; 

1 2 3 4((4,6) , (5) ,(1, ) , (2,3) )m , 1 2 3 4((5) , (4,6) , (1, ) , (2,3) )m , 1 2 3 4((2,3) , (1, ) , (5) ,(4,6) )m , 

1 2 3 4((2,3) , (1, ) , (4,6) , (5) )m .  

For each of them, the unique non-centered local extremum e :=
22 3 ia a A  arises, in the reduced form of 

w = 1 ma xcya , from the interval block (2, 3)  ; and 4:x ea , 5:c a . The subwords obtained from w  by 

excluding or by centering e , adequately to its type, are both simple random variable in ( , , , )A    ; so,  

( )w  0, by Lemma 3.1.  
2) The crossing partitions  
{(1,3) , (6) , (4,5) ,(2, ) }u v s tm , {1,2}u v , , {3,4}s t ;{(4,5) , (2, ) ,(1,3) , (6) }s t u vm , {1, 2}s t , 

, {3, 4}u v ; 1 2 3 4((4,5) , (1,3) , (2, ) , (6) )m , 1 2 3 4((6) , (2, ) ,(1,3) , (4,5) )m  

and the non-(anti-)monotone non-crossing partitions 

1 2 3 4((4,5) , (2,3) , (1, ) , (6) )m  and 1 2 3 4((6) , (1, ) ,(2,3) , (4,5) )m . 

For these partitions, the unique non-centered local extremum e :=
44 5 ia a A  arises, in the reduced form 

of w = 1 ma xca , from the interval block (4, 5)  ; with 2 3:x a a e , 6:c a  in both non-crossing cases (when 

22 3 ia a A  is not a local extremum in w). The reduced subword obtained from w  by centering e , 

adequately to its type, is a simple random variable in ( , , , )A    , in all cases; so is also the subword 
obtained from w  by excluding  e , adequately to its type, in the crossing cases. But, in the non-crossing 
cases,  2 3a a  becomes a local extremum in the reduced form of the subword obtained from w  by excluding 

e , adequately to its type; and note, the value of   corresponding to this subword reduces to the above 

Examples 3.5 for 5m  . Thus, 1( ) 0ma xca  in all cases, via Lemma 3.1. 

3) The ordered non-crossing partitions  
{(1, ) , (2,5) , (3,4) , (6) }u v s tm , , {1,2}u v , , {3,4}s t and 1 2 3 4((6) , (1, ) ,(2,5) , (3,4) )m . 

For each of them, the unique non-centered local extremum e :=
33 4 ia a A  arises as a peak, in the 

reduced form of w = 1 ma xca , from the interval block (3, 4 )  , with 2 5:x a ea ; and 6:c a  as peak or bottom 

adequately centered. The reduced subword obtained from w  by centering e , adequately to its type, is a 
simple random variable in ( , , , )A    , in all cases. For the two monotone cases (: 1u  , 2v  ), the reduced 
subword obtained from w  by excluding e , adequately to its type, is a simple random variable in 
( , , , )A    , too. As for the rest, for the non-(anti-)monotone partitions, the value of   corresponding to 
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this subword reduces to the Examples 3.5 before for 5m  , again. Thus, 1( ) 0ma xca  in all cases, via 

Lemma 3.1. 
4) Finally, the ordered non-crossing partitions: 
{(1, ) , (4,5) , (2,3) , (6) }u v s tm , , {1,2}u v , , {3,4}s t (monotone) and {(2,3) ,(6) , (1, ) , (4,5) }s t u vm , 

, {1, 2}s t , , {3, 4}u v (anti-monotone). 

For them, the interval blocks (2, 3)  and (4, 5)  give the non-centered local extrema 2e , 1e  of type 1, 

and 2, in the monotone case; but of type 2, and 1, in the anti-monotone case. By centering  2e , 1e  adequately 

to their type je = 1j jb e    , where the scalars jb   are given by 2 :b  2( )e , and 1 :b  1( )e , for the 

monotone case , but 2 :b  2( )e , and 1 :b  1( )e , for the anti-monotone case, and :je = 1j je b  , we 

expand :x  2 1e e = 1 2x x x x   
 , with x := 1 2b b , 1 1 2:x b e  , 2 2 1:x b e  , and :x 

2 1e e  , and note all 

random variables 1 na x ca , 1 1 na x ca , 1 2 na x ca  and 1 na x ca  are simple in ( , , , )A    ; with 6:c a  as peak 

or bottom, in the monotone, and, respectively, anti-monotone case. Thus, they are in ker  by Lemma 3.1, 

once again. Hence, 1( ) 0ma xca  , always. 

Letting 7m  , suppose the assertion true for any word 1 pa xcya  s.t. the ordered subpartition of    

associated to pxyaa1 belongs to 2 ( 1)OP p   with mp  , and verify it for m  as follows. Consider 

1 mw a xcya  and  the ordered subpartition  of    associated  to mxyaa1  belonging to 2 ( 1)OP m . We may 

proceed in a similar way with [15, Lemma 3.6]. Assume the ordered subpartition of   associated to x  has 
exactly k  interval blocks giving local extremum singletons 1,...,ke e , so that 1 1k kx ue v e v  ,  with jvu,  as 

reduced words being void or arbitrary products of 
jj ia A ; else, the reasoning is similar. Center je  

adequately to its type  je = 1j jb e   , (with jb  , etc.)  to expand in the pre-centered form 

( )

1

k
j

j
j

x b x x


    (with  ( )jx and x  defined as in Preliminaries). 

The ordered subpartition of   associated to myaxa )1(
1  belongs to 2 ( 3)OP m  , and )()2( ,..., kxx may 

be expressed as algebraic sums (with 1  as coefficients) of random variables x  having the same generic 
form as x , but the ordered subpartition of    associated to each 1 ma xya  belongs to 2 ( 1)OP p  , with some 

p m . Therefore 
( )

1( ) 0j
ma x cya  , for every ,,...,1 kj   via the inductive hypothesis. Moreover, 

1( ) 0ma x cya 
, by Lemma 3.1, since 1 ma x cya

  is a simple random variable in ( , , , )A    . 

 We  conclude by induction. 
       
Due to Lemma 3.1 and Lemma 3.6, we  extend below [15, Lemma 3.7], [16, Lemma 3.4] and [17, 

Lemma 3.4]. 

Lemma 3.7 Let 1 nw a a A   , s.t. all 
jij Aa  are  , ,  -centered, and the ordered partition   

associated to w  is a crossing  pairing. Then ( ) 0w  . 
Proof. In view of Lemma 3.3 (the weak independence) and Lemma 3.1, it remains to consider:   is 

irreducible, and w  has (under its reduced form) local extrema arising from some interval blocks of  . 
For 6n  , there are involved only the crossing pairings listed below: 

3{(1,5) , (4, ) , (2,3) }s tn , 3{(1,5) , (2, ) , (3,4) }s tn , 3{(1,3) ,(2, ) , (4,5) }s tn 2 (6)OP , with , {1,2}s t ; and 

 1{(2,3) , (1,5) , (4, ) }u vn , 1{(3,4) , (1,5) , (2, ) }u vn , 1{(4,5) , (1,3) , (2, ) }u vn 2 (6)OP , with , {2,3}u v . 
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For each of them, the unique local extremum e  in the reduced form of w  arises as a peak in the first 
list above from the interval block 3( , )  ; but, it arises as a bottom from the interval block 1( , )  in the former 

list. The subwords obtained from w  by excluding or by centering e , adequately to its type, are both simple 
random variable in ( , , , )A    ; so,  ( )w  0, always, by Lemma 3.1 . 

Let 6n  , and the statement true for all np . Then, for 1 nw a a A   , the inferences below help 

to conclude by induction. 

Let 1 :
ll l l ia a e A    be, for instance, the left local extremum in the reduced form of w , arising (as a 

singleton) in w  from an interval block ( , 1)l l   , with 1 1 2l l l li i i i      or 1 1 2l l l li i i i     , if  

le is a peak or a bottom in w , respectively. Then we may express  1 l nw a xe ya  as in Lemma 3.6; where 

,x y  are void or arbitrary  products of 
jij Aa   with ( ) 0ja  ( )ja ( )ja ; but, x  (as non-void 

factor in w ) has no local extrema arising from interval blocks of  . By the reducing of ,x y , and the 

adequate centering of le , we get now 1l nw b a xya  1 l na xe ya , with lb : ( )le  or :lb ( )le , if  le  is a 

peak or a bottom in w , respectively; and le := le  1lb  . The ordered subpartition of   associated to 

1 na xya  is crossing and belongs to 2 ( 2)OP n  . Hence ( ) 0w  , because 1 na xya  and 1 l na xe ya  belong to 

the kernel of  , by the inductive  hypothesis, and Lemma 3.6, respectively. 
 
If ( , )A    is a quantum probability space, and 1 2,x x A  are random variables s.t. one of them is  -

centered, then 1 2 2 1 2( ) ( , )x x k x x  ; whenever, e.g., 2k is the tensor/free/Boolean/monotone joint cumulant 

(see, e.g., [1, 28]) w.r.t.   of order two. In the sequel, we may use one of these choices. 
 

In general, the scalars involved below 1( ,..., )nk a a , for 2 ( )ONC n   and 
jij Aa  , can be 

described as follows; compare with  the c-free case [3, 15], and  c-monotone case ;see, e.g. [17] . 

1) If   has a single block, then that is an outer block of  , and 1 2( , )k a a := 2 1 2( , )k a a
. 

2) If     , with 2 ( )ONC i   and 2 ({ 1,..., })ONC i n   , then  

    1( ,..., )nk a a := 1( ,..., )ik a a  1( ,..., )i nk a a  . 

3)If  consists of the block (1, )n  , and the subpartition   {2,..., 1}n   2 ({2,..., 1})ONC n  , 

then  

    1( ,..., )nk a a := 2k 1 2 1( , ) ( ,..., );n na a k a a   where the scalars 2 1( ,..., )nk a a   are described in the 

following way, with 3n . More generally, for a subpartition   of 2 ( )ONC n  , i.e., 2 ( )ONC S   and 

1{ ,..., }nS i i , say 1: { ,..., }sS   , define 1( ,..., )sk x x , for 
jjx A  as follows. 

i) If   has a single block, then that is an inner block ( , )l   of  , and let ( , )k   be its nearst cover in 

 .Then    

    1( , )sk x x := 2 1( , )sk x x  if l k  , but   1( , )sk x x := 2 1( , )sk x x  if l k .  

ii)If    , with  2 1( )ONC S , and   2 2( )ONC S , then 

    1( ,..., ) :sk x x = 1 2( , ) ( , )i ik x i S k x i S    .  

 

Some computations of the scalars 1( ,..., )nk a a , for 2 ( )ONC n   are presented below. 

Examples 3.8 1) For 8n  , let 1  1 2 3 4((2,5) , (3,4) (1,8) , (6,7) ) , and 2  1 2 3 4((2,3) , (1,8) , (5,6) , (4,7) ) . 
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By considering 2: ((3, 4) )   and 4: ((6,7) )   as ordered subpairings of 1 , we get 

3 4 2 3 4 2( , ) ( , ) :k a a k a a b
   , and 6 7 2 6 7 1( , ) ( , ) :k a a k a a b

   , because the nearest cover in 1  of 2(3, 4)  

is 1(2,5)  and of 4(6,7)  is 3(1, )n . Thus, for 1 2: ((2,5) , (3, 4) )   we get by definition 

2 5 2 2 5 2( ,..., ) ( , )k a a k a a b
  , the nearest cover in 1  of 1(2,5)  being 3(1, )n . Then, for the ordered 

subpairing of 1 = 3((1, ) )n   defined by :    , the definition of k  implies 

2 7( ,..., )k a a  2 5 6 7( ,..., ) ( , )k a a k a a  = 2 2 5 2 1( , )k a a b b . 

Hence 
1 1( ,..., )nk a a = 2k 1 2 1( , ) ( ,..., )n na a k a a  = 2 1 2 2 5 2 1( , ) ( , )nk a a k a a b b  . 

In the second case, consider  := 1((2,3) ) ,  := 4((4,7) ) , 3: ((5,6) )   as ordered subpairings of 

2 , to get 2 3 2 2 3 2( , ) ( , ) :k a a k a a b
    and 5 6 2 5 6 1( , ) ( , ) :k a a k a a b

   , because the nearest cover in 2  

of 1(2,3)  is 2(1, )n  and of 3(5,6)  is 4(4,7) . Then for :     , the definition of k  implies 

4 7( ,..., )k a a  2 4 7 1( , )k a a b , the nearest cover in 2  of   being 2(1, )n . Thus, for the ordered subpairing 

of 2 = 2((1, ) )n   defined by :    , the definition of k  implies now  

2 7( ,..., )k a a  2 3 4 7( , ) ( ,..., )k a a k a a  = 2 2 4 7 1( , )b k a a b . 

Hence 
2 1( ,..., )nk a a = 2k 1 2 1( , ) ( ,..., )n na a k a a  = 2 1( , )nk a a

2 2 4 7 1( , )b k a a b . 

2) For 10n  , let 3  1 2 3 4 5((2,5) , (3,4) (1, ) , (7,8) , (6,9) )n . Denote in this case   := 1((2,5) ) , 

 := 2((3,4) ) ,  := 5((6,9) )  and  := 4((7,8) )  as ordered subpairings of 3 , to get 

3 4 2 3 4 2( , ) ( , ) :k a a k a a b
   , and 7 8 2 7 8 1( , ) ( , ) :k a a k a a b

   ; because the nearest cover in 3  of the 

involved inner block belonging to  ,     is 1(2,5) , respectively, 5(6,9) . Then for :      and :   

  , it follows 2 5 2 2 5 2( ,..., ) ( , )k a a k a a b
   and 6 9( ,..., )k a a  2 6 9 1( , )k a a b ; the nearest cover in 3  of  

the blocks from   and   being 3(1, )n . These imply, for the ordered subpairing of 3 = 3((1, ) )n   

defined by :    ,  

2 9( ,..., )k a a  2 5 6 9( ,..., ) ( ,..., )k a a k a a  = 2 2 5 2( , )k a a b
2 6 9 1( , )k a a b ; and finally  

3 1( ,..., )nk a a = 2k 1 2 1( , ) ( ,..., )n na a k a a  = 2 1( ,k a )na 2 2 5 2( , )k a a b
2 6 9 1( , )k a a b . 

 
We illustrate the next lemma by the following classes of partitions in 2 ( )ONC n  associated to 

1 nw a a A   . Compare with  [16, Ex. 3.5] and  [17, Ex. 3.7]. 

Examples 3.9 1) For 4n  , let 1 1 2((2,3) , (1, 4) )   and 2 1 2((1, 4) , (2,3) )  , which are anti-

monotone and, respectively,  monotone. In both cases, the unique local extremum e 2 3: a a  arises from the 

block (2,3) : as a bottom for 1 , and a peak for 2 ; and the nearest cover of this block is (1,4) , in each 

case. The subword obtained from w  by centering e , adequately to its type, is a simple random variable in 
( , , , )A    ; so, it belongs to the kernel of  , by Lemma 3.1. Thus, ( )w  equals the value of   on the 
subword obtained from w  by excluding  e , adequately to its type.  

Hence, ( )w  2 1 4( , )k a a b , with 2 2 3: ( , )b k a a , for 1 , but 2 2 3: ( , )b k a a  for 2 ; giving, by 

definition,  1 4( ,..., )
i

k a a , respectively. 

2) For 6n  , let   be any of the ordered non-crossing pairings listed below: 
i) 1 2 3((1,6) ,(2,5) ,(3,4) ) 2 (6)M , 1 2 3((3,4) , (2,5) , (1,6) ) 2 (6)AM , and 
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1{(2,5) , (3,4) , (1,6) }s t , 3{(1,6) , (3,4) , (2,5) }u v 2 2 2(6) \ ( (6) (6))ONC M AM  , with , {2,3}s t ,  

respectively, , {1,2}u v ; 

ii) 3{(2,3) , (4,5) , (1, ) }s t n 2 (6)AM , with , {1, 2}s t , and 1 2 3((2,3) , (1, ) , (4,5) )n  

2 2 2(6) \ ( (6) (6))ONC M AM  . 

For each partition from the first list i), the unique non-centered local extremum e 3 4: a a  emerges 

from the block (3, 4 )   as a peak in the monotone case or the first non-(anti-)monotone cases, but as a 

bottom, otherwise. Remark 2a  and 5a  are local extrema in the non-(anti-)monotone cases, but they are 

already centered adequately to their type. In all cases, the subword obtained from w  by centering e , 
adequately to its type, is a simple random variable in ( , , , )A    ; so, it is in the kernel of   by Lemma 3.1. 

Therefore,  ( )w  equals the value of   on the subword obtained from w  by excluding  e , adequately to its 

type. The computation reduces to the above examples for 4n  , giving, with 2 3 4: ( , )b k a a  when e  is a 

peak, but  with 2 3 4: ( , )b k a a , when e  is a bottom, 

 ( )w  2 1 2 5( , ) ( , )nk a a k a a b
 ; denoting :  ((2,5) ) as ordered subpairing of {(1, ) ,(2,5) }n   . 

By considering :  ((3,4) )  as ordered subpairing of  , we get 3 4( , )k a a b   always, because the 

nearest cover in   of the block (3, 4 )   is the block (2, 5)  . Consequently, the definition of k  and k , 

where :     as ordered subpairing of   = ((1, ) )n    , imply 

2 5( ,..., )k a a  2 5 3 4( , ) ( , )k a a k a a   2 5( , )k a a b , and finally 

 ( )w = 2k 1 2 5( , ) ( ,..., )na a k a a = 1( ,..., )nk a a  always. 

Explicitly, ( )w  equals:  

2 1( ,k a
2 2 5 2 3 4) ( , ) ( , )na k a a k a a  ,  in the monotone case; 

 2 1( ,k a
2 2 5 2 3 4) ( , ) ( , )na k a a k a a   and 2 1( ,k a

2 2 5 2 3 4) ( , ) ( , )na k a a k a a  , respectively, in the non-(anti-) 

monotone cases;  

2 1( ,k a
2 2 5 2 3 4) ( , ) ( , )na k a a k a a  , in the anti-monotone case. 

Concerning the anti-monotone partitions from the second list ii) above, remark the unique non-centered 
local extremum e  arises as a bottom from (2,3) , respectively (4,5)  In both cases, the subword obtained 

from w  by centering e , adequately to its type, is a simple random variable in ( , , , )A    ; so, it belongs to 

the kernel of   by Lemma 3.1. Therefore, once again ( )w  equals the value of   on the subword obtained 

from w  by excluding e , adequately to its type. According to the above anti-monotone example for 4n  , 
we deduce 

 ( )w = 2 1( ,k a
2 4 5) ( , )na bk a a  with 2 2 3: ( , )b k a a , respectively 

( )w = 2 1( ,k a
2 2 3) ( , )na k a a b  with 2 4 5: ( , )b k a a . 

By considering :  ((2,3) )  and :  ((4,5) )  as ordered subpairings of  , note that 

2 3( , )k a a = b and 4 5( , )k a a b  , because (1, )n   is the nearest cover in   of both blocks involved. 

The definition of k  and k , where :     as ordered subpairing of   = ((1, ) )n    , imply 

this time 

2 5( ,..., )k a a  2 3( , )k a a 4 5( , )k a a = bb , but finally  

( )w = 2 1( ,k a
2 2 3 2 4 5) ( , ) ( , )na k a a k a a  = 1( ,..., )nk a a . 
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For the non-(anti-)monotone pairing   remaining in the list ii), the local extrema 2e , 1e  arise from the 

interval blocks 1(2, 3)  and 3(4, 5)  as a bottom and, respectively, a peak. By centering each of 2e , 1e  

adequately to its type je = 1j jb e    , where the scalars jb   are given by 2 :b  2( )e , and 1 :b  1( )e , 

and :je = 1j je b  , we express   :x  2 1e e = 1 2x x x x   
 , with x := 1 2b b , 1 1 2:x b e  , 2 2 1:x b e  , and 

:x 
2 1e e  , and note the random variables 1 1 na x a , 1 2 na x a  and 1 na x a  are simple in ( , , , )A    , being in  

ker  by Lemma 3.1. Therefore, ( )w = 1( )na x a  =
2 1 2 1( , )nk a a b b . By regarding :  1((2,3) )  and 

:  3((4,5) )  as ordered subpairings of  , note that 2 3( , )k a a = 2b  and 4 5 1( , )k a a b  , because (1, )n   is 

the nearest cover in   of both blocks involved. 

The definition of k  and k , where :     as ordered subpairing of   = ((1, ) )n    , imply in 

this case 

2 5( ,..., )k a a  2 3( , )k a a 4 5( , )k a a = 2b 1b  and finally  

( )w = 2 1 2 2 3 2 4 5( , ) ( , ) ( , )nk a a k a a k a a   = 1( ,..., )nk a a . 

3) For 8n  , and 10n  , let return to the ordered non-crossing pairings from the Examples 3.8, 
which are non-(anti-)monotone: 1  1 2 3 4((2,5) , (3,4) (1,8) , (6,7) ) , 2  1 2 3 4((2,3) , (1,8) , (5,6) , (4,7) ) , and,  

respectively, 3  1 2 3 4 5((2,5) , (3,4) (1, ) , (7,8) , (6,9) )n . 

For 1 , the non-centered local extrema 2e , 1e  arise from the interval blocks 2(3, 4) and 4(6 , 7 )  as  

peaks. By centering  2e , 1e  adequately to their type je = 1j jb e    , where the scalars jb   are given by 

2 :b  2( )e , and 1 :b  1( )e , and :je = 1j je b  , we express :x  2 1ue ve = 1 2x x x x   
 , with 

x := 1 2b b uv , 1 1 2:x b ue v  , 2 2 1:x b uve  , :x 
2 1ue ve  , 2u a  and 5v a  and note the random variables 

1 1 na x a  and 1 na x a  are simple in ( , , , )A    , being in  ker  by Lemma 3.1; moreover,  1 2( ) 0na x a   

due to an example before, for 6n  , from the list  ii). By the anti-monotone example for 4n   before, we 

get ( )w = 1( )na x a  = 2 1 2 2 5 2 1( , ) ( , )nk a a k a a b b  =
1 1( ,..., )nk a a  according to Examples 3.8. 

For 2 , the non-centered local extrema 2e , 1e  arise from the interval blocks 1(2, 3) and 3(5, 6 )  as  

bottoms. By centering  2e , 1e  adequately to their type je = 1j jb e    , where jb   are given by 

2 :b  2( )e , and 1 :b  1( )e , and :je = 1j je b  , we express :x  2 2 1 1e v e v = 1 2x x x x   
 , with 

x := 1 2 2 1b b v v , 1 1 2 2 1:x b e v v  , 2 2 2 1 1:x b v e v  , :x 
2 2 1 1e v e v  , 2 4v a  and 1 7v a  and note the random 

variables 1 2 na x a  and 1 na x a  are simple in ( , , , )A    , belonging to  ker  by Lemma 3.1; moreover,  

1 1( ) 0na x a   due to the same example before, for 6n  , from the list  ii). But now, by the monotone 

example for 4n   before, ( )w = 1( )na x a  = 2 1 2 2 4 7 1( , ) ( , )nk a a b k a a b  =
2 1( ,..., )nk a a  according to 

Examples 3.8. 
For 3 , the non-centered local extrema 2e , 1e  arise from the interval blocks 2(3, 4) and 4(7 , 8)  as a 

peak and, respectively, a bottom. By centering each of 2e , 1e  adequately to its type je = 1j jb e    , where 

jb   are given by 2 :b  2( )e , and 1 :b  1( )e , and :je = 1j je b  , we develop   :x  2 2 1 1ue v e v = 

1 2x x x x   
 , with x := 1 2 2 1b b uv v , 1 1 2 2 1:x b ue v v  , 2 2 2 1 1:x b uv e v  , :x 

2 2 1 1ue v e v  , 2u a , 2 5 6v a a  

and 1 9v a  and note the random variable 1 na x a  is simple in ( , , , )A    , being in  ker  by Lemma 3.1. 

Moreover, 1 1 na x a , 1 2 na x a  are not simple random variables, but these belong also to ker , by  the previous 
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examples for 6n   concerning 1  and, respectively, 2 . Therefore, by the same example before, for 6n  , 

from the list ii), we get 

 ( )w = 1( )na x a  = 2 1( , )nk a a
2 2 5 2 2 6 9 1( , ) ( , )k a a b k a a b  =

3 1( ,..., )nk a a  according to Examples 

3.8. 
Due to Lemma 3.1 again, and Lemma 3.6, we get the adequate extension of [15, Lemma 3.8],[16, 

Lemma 3.6] and [17, Lemma 3.8]  by a  combined argument; via Lemma 3.3. 

Lemma 3.10 Let 1 nw a a A   , s.t. all 
jij Aa  are  , ,  -centered and the ordered  partition 

  associated to w  is a non-crossing pairing. Then ( )w  1( ,..., )nk a a . 

Proof. In view of Lemma 3.3 (the weak independence), and Lemma 3.1, we may consider (1, )n   , 

and w  has (under its reduced form) local extrema arising from some interval blocks of  . Note that, for the 

pair of blocks k lP P , where kP  is the nearst cover of lP , in  , involving such an interval block giving the 

left (right) local extremum e  in w , the colouring is order-reflecting: k l  , if e  is a peak; but, it is order-
reversing: k l , if e  is a bottom. 

For 4n , see Examples 3.9. For 6n  , there are only the following pairings  , besides the 
partitions in Examples 3.9: 

1 2{(1, ) , (2,3) , (4,5) } (6)s tn ONC , , {2,3}s t , and 1 2 3 2 2 2((4,5) , (1, ) , (2,3) ) (6) \ ( (6) (6))n ONC M AM  . 

 For the monotone pairings above, the single non-centered local extremum e  arises from the interval 
block 3( , )   as a peak. In both cases, the subword obtained from w  by centering e , adequately to its type, is 

a simple random variable in ( , , , )A    ; so, it is in the kernel of   by Lemma 3.1. Therefore, once again 

( )w  equals the value of   on the subword obtained from w  by excluding  e , adequately to its type. The 

computation reduces to the monotone example for 4n  , giving in both cases 
( )w  2 1 2 2 3 2 4 5( , ) ( , ) ( , )nk a a k a a k a a   . By considering  := ((2, 3) )  and  := ((4, 5) )  as ordered 

subpairings of the monotone subpartition  := 2{(2,3) , (4,5) } (4)ONC   of  , we get 

2 3 2 2 3( , ) ( , )k a a k a a
   and 

4 5 2 4 5( , ) ( , )k a a k a a
  , because 1(1, )n  is the nearst cover in   of both 

blocks (2, 3)  and (4, 5)  . Hence  ( )w  2 1 2 5( , ) ( , ..., )nk a a k a a
 = 1( ,..., )nk a a  , in both cases, by 

definition of k . 

For the non-(anti-)monotone pairing above, the local extrema 2e , 1e  arise from the interval 

blocks 3( , )  and 1( , )   as a peak and , respectively, a bottom. By centering each of 2e , 1e  adequately to its 

type je = 1j jb e    , where jb   are given by 2 :b  2( )e , and 1 :b  1( )e , and :je = 1j je b  , we 

develop   :x  2 1e e = 1 2x x x x   
 , with x := 1 2b b , 1 1 2:x b e  , 2 2 1:x b e  , and :x 

2 1e e  , and note the 

random variables 1 1 na x a , 1 2 na x a  and 1 na x a  are simple in ( , , , )A    , belonging to ker  by Lemma 3.1. 

Hence ( )w  equals 1( )na x a  =
2 1 2 1( , )nk a a b b = 2 1 2 2 3 2 4 5( , ) ( , ) ( , )nk a a k a a k a a   = 1( ,..., )nk a a , by 

definition of k ; because 2(1, )n  is the nearst cover in   of both blocks 
3(2, 3) and

1(4, 5) . 

Let 6n  . Suppose the assertion true for all np . To conclude by induction, remark the next facts. 

Let 1 :
rr r r ia a e A    be, for instance, the right local extremum in the reduced form of w , arising (as a 

singleton) in w  from an interval block ( , 1) lr r   , with 1 1 2r r r ri i i i      or 1 1 2r r r ri i i i     , if  

re is a peak, or a bottom in w , respectively. Denote by k  the order of the nearst cover of this block in  . 

Let : (( , 1) )lr r    as ordered subpartition of  . Then we may express  1 r nw a xe ya  as in Lemma 

3.6; where ,x y  are void or arbitrary  products of 
jij Aa   with ( ) 0ja  ( )ja ( )ja ; but, y  (as 
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non-void factor in w ) has no local extrema arising from  interval blocks of  . After the reducing of x  and 

y , and the adequate centering of re , we get now 1r nw b a xya  1 r na xe ya , with the scalars rb : ( )re  or 

:rb ( )re , if  re  is a peak, or a bottom in w , respectively; and re := re  1rb  . Now, the ordered 

subpartition of   associated to 1 na xya   belongs to 2 ( 2)ONC n  . Thus, 1( ) 0r na xe ya  , by Lemma 3.6, 

again. Then, by definition, 
1 2 1( , ) ( , )r r r rk a a k a a

   , if re  is a peak (when l k ); but 

1 2 1( , ) ( , )r r r rk a a k a a
   , if re  is a bottom (when l k ). Thus, 

1( , )r r rk a a b    always. 

We may proceed as in [15, Lemma 3.8], [16, Lemma 3.6] and [17, Lemma 3.8]. Let 

2 ({2,..., 1} \{ , 1})ONC n r r     be the ordered sub-partition of   associated to xy and 

{(1, ) }n   =: 2 ({1,..., } \{ , 1})ONC n r r    be the ordered sub-partition of   associated to 1 na xya . The 

induction hypothesis and the definition of k  imply 

1( )na xya  1 2 1 2 1( , ,..., , ,..., , )r r n nk a a a a a a     = 2 1 2 1 2 1( , ) ( ,..., , ,..., )n r r nk a a k a a a a
    . 

But 2 1 2 1( ,..., , ,..., )r r n rk a a a a b    = 2 1 2 1 1( ,..., , ,..., ) ( , )r r n r rk a a a a k a a     = 

= 2 1 1 2 1( ,..., , , , ,..., )r r r r nk a a a a a a     , by definition of k ; denoting :     as ordered 

subpartition of  . 

And note   = ((1, ) )n   ; hence ( )w  2 1 2 1( , ) ( , ..., )n nk a a k a a
  = ),...,( 1 naak  by definition of 

k , too.     
 Remarks 3.11 Moreover, for the random variable w  in the previous statement, Lemma 3.6 implies 

( )w  ( )w  , where w  is the subword obtained from w  by excluding, adequately to their types, all the 

local extrema not centered adequately (when they exist) that arise, in the reduced form of w  or in the 
reduced form of any subword w  obtained from w  by excluding, adequately to its type, any  local extremum 
not centered adequately.  

Similar identities describe the expectation ( )w  concerning the random variable w  in [15, Lemma 

3.8], [16, Lemma 3.6] and [17, Lemma 3.8]. Namely, w  is the subword obtained from w  by excluding: 

w.r.t.  , for the c-free and c- monotone cases, all non  -centered singletons, respectively, all internal 
peaks (when they exist) arising, in the reduced form of w , or in the reduced form of any subword 
wobtained from w  by excluding, w.r.t.  , any singleton, respectively, any internal peak non  -centered; 
for the monotone case, by excluding all non-centered internal peaks, in the same conditions, etc. 

 
 This final lemma extends [17, Lemma 3.9] to a family of  , ,  -indentedly independent sets of 

random variables. 

Lemma 3.12 Let ia = ( )s
i s Sa  , Ii  be random vectors in a probability space ( , , , )A    , such that 

{ , }s
ia s S A  , Ii are  , ,  -indentedly independent sets of random variables in ( , , , )A    , and 

ia = ( )s
i s Sa  , Ii have the same joint distribution w.r.t.  , ,  . Then the joint moments of  ( )i i Ia   w.r.t. 

  are invariant under order-preserving injective maps; i.e., for all n , all 1,..., ns s S , all 1,..., ni i I  and 

all order-preserving injection  1: ,..., ni i I  , it holds   1

1
( ... )n

n

ss
i ia a = 1

1( ) ( )( ... )n

n

ss
i ia a  . 

Proof. Since ia , Ii are identically distributed  w.r.t.  , we get the statement if all li  are equal. 

Otherwise, assume the statement valid for any  p n .   

Let consider ll i  has no intervals. 
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If  ll i  has no local extrema, then ( )ll i  has no local extrema, too, these both maps are strictly 

monotone and the statement for n  follows via Lemma 3.1 and the same non-inductive hypothesis cited 
above for ia , Ii . 

Alternatively, denote :l

l

s
i la c , ( ) :l

l

s
i la d  , for 1,..,l n , and the random variables from both sides by 

1: nw c c   and 1' : nw d d  . If ll i  has pi  as local extremum, then ( )ll i has ( )pi  as local 

extremum of the same type. In other words, if pc  is a local extremum in w , then pd  is a local extremum of 

the same type and on the same place ( )p p  in 'w . 

Suppose w  has exactly k  local extrema 1,..., ke e ; thus, 'w  has exactly k  local extrema 1,..., kf f  of 

the same type and on the same places, respectively. We may express w = 1 nc xc , 'w = 1 nd yd  with 

1 1k kx ue v e v  , 1 1k ky uf v f v   with , ru v  and , ru v   being void or arbitrary products of lc  and, 

respectively, ld  ; 1,...,l n . But , ru v  and , ru v  as non-void factors in x  or y  have no local extrema. 

By centering each pair of local extrema re , rf  adequately to their type, and nc , nd  w.r.t.  , note that 

nc = 1n nb c   , then nd = 1n nb d    with : ( ) ( ),n n nb c d    and re = 1r rb e   , rf = 1r rb f    with the 

same scalars  rb  ; because ia , Ii are identically distributed  w.r.t.  , ,  . 

Consequently, by developing x  and y  in the pre-centered form ( )

1

k
l

l
l

x b x x


    and 

( )

1

k
l

l
l

y b y y


    (with corresponding ( )lx , x  and, respectively, ( )ly , y defined as in Preliminaries), we 

get w = 1nb c x  ( )
1 1

1

k
l

l n n
l

b c x c c x c


    , and 'w = 1nb d y  ( )
1 1

1

k
l

l n n
l

b d y d d y d


    . 

All ( )lx and ( )ly , 1,...,l k  express as algebraic sums (with 1  as coefficients) of random variables 

x , respectively y  having the same generic form as x , and, respectively, y . But the length of 1 nc xc  and 

1 nd yd   is obviously inferior to n . By the inductive hypothesis,   takes equal values on 1c x  and 1d y  or on 

all the terms  1 nc xc  and 1 nd yd    of the same length, from each pair  ( )
1

l
nc x c  and ( )

1
l

nd y d   ( l  being fixed). 

Hence the statement for n  is valid; because the terms of maximum length 1 nc x c   and 1 nd y d   are in 

the kernel of   by Lemma 3.1 as simple random variables in ( , , , )A    . 

When ll i  has intervals, the statement for n  follows by the same reasoning as above, after a 

reducing of the random variables from both sides. Therefore, the statement being clear for 3n , we  
conclude by induction. 

4. INDENTED GAUSSIAN FAMILY AND MULTIVARIATE CLT 

 

Let I  be an arbitrary index set. We remind a scalar matrix ,{ }ij i j Iq q  is positive if and only if 

,
, 1

0
k l

n

i i k l
k l

q  


 , for all n , all 1,..., ni i I ,  and all 1,..., n  ℂ.  

The following definition is inspired from [1, 3, 4, 6, 8, 9, 12-17, 28].  
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Definition 4.1 Let ,{ }ij i j Iq q  , ,{ }ij i j Ir r   and ,{ }ij i j Is s   be (positive) scalar matrices. Let 

( , )A   be a quantum (*-) probability space. A family of (selfadjoint) random variables ( )i i Ig g   in this is 

called a centered indented  Gaussian family of covariances q,r and s, if its distribution is of the following  

form, for all j  ℕ and all 1,..., ji i I :  

1
( ... )

ji ig g =
 

1

2

1
!

( ,..., )
ji i

ONC j

k g g

 ; where  

1
( ,..., )

ji ik g g :=
1 2( , ) ( ) ( , ) ( ) ( , ) ( )

k l k l k li i i i i i
k l k l I k l I

q r s
    

  
  

.  

 
Remarks 4.2 1) If q=r, we get an ordered-free  Gaussian family of covariances r and s. 
2) If s=r, we get a c-free Gaussian family of covariances q and r, involving the non-crossing 

pairings 2 ( )NC j (see, e.g., [3, 15]);in particular, when s=r=q, we obtain a free Gaussian (: semicircular)  

family  of covariance q (see, e.g., [28]). 

3) If s=0, we recover the notion of c-monotone Gaussian family of covariances q and r, involving the 

monotone pairings 2 ( )M j [17, Def 4.1];in particular, when s=0 and r=q, we get a monotone Gaussian 

family of covariance q (see, e.g., [9, 16]). 
4) If r=0, we recover the notion of c-anti-monotone Gaussian family of covariances q and s, involving 

the anti-monotone pairings 2 ( )AM j [17];in particular, when r=0 and s=q , we get an anti- monotone 

Gaussian family of covariance q (see, e.g., [9, 16]). 

5) If s=r=0, we obtain a Boolean Gaussian (:Bernoulli) family of covariance q, involving the interval 

pairings 2 ( )I j  (see, e.g., [15, 17]) ; an empty product being equal to 1 by convention.  

 

Theorem 4.3 Let ( , , , )A     be a unital quantum (*-)probability space, and { , }i
rX i I A  , r  ℕ 

be a sequence of   , , -indentedly independent sets of (selfadjoint) random variables in this, s.t. 

rX = ( )i
r i IX   has the same joint distribution for all r  ℕ , and all variables are centered, both  w.r.t. 

 , , . Consider, for every 1N  , the sums 1

1

:
N

i i
N rN

r

S X


  A , and : ( )i
N N i IS S   as random vector in 

( , )A  . Denote the covariances of the variables w.r.t.  , ,  by ,{ }ij i j Iq q  , ,{ }ij i j Ir r   and 

,{ }ij i j Is s  ; i.e., :ijq  ( )i j
r rX X , :ijr  ( )i j

r rX X  and :ijs  ( )i j
r rX X . Then distr

NS g ;  where 

( )i i Ig g   is a centered indented Gaussian family of (positive) covariances q, r and s.   

Proof. Since all rX  have the same joint distribution w.r.t.  , ,  and form  , , -indentedly 

independent sets, Lemma 3.12 implies for all fixed jℕ and all 1,..., ji i I , that the moment 1

1
( ... )j

j

ii
r rX X  

depends only on the ordered partition ( )OP j   corresponding to 1( ,..., )jr r  ℕ j . We may denote 

1

1
( ... )j

j

ii
r rX X =: 1( ; ,..., )ji i  . The reasoning follows now the argument from [15-17], in view of the other 

new lemmata from the previous section. We display it (as a sort of leitmotif) only for the reader’s 
convenience. 

Thus,  

   1( ... )jii
N NS S =  1

1

1

1

,..., 1

( ) ( ... )j

j

j

N
iij

r rN
r r

X X


 =
 

1
1( ) ( ; ,..., )j

N jN
OP j

C i i



 

 ,  

as in [3,15-17, 20]; where   denotes the number of blocks in  ; and the number of representatives of the 

equivalence class corresponding to the involved partition : ! !( )!NC N N     grows asymptotically 
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like N  for large N . Lemma 3.4 implies that every partition with singletons has null contribution in the sum 

above. But the partitions without singletons have 2
j   blocks, and the limit of the factor 1( ) j

NN
C  is 0, if 

2
j  ; and is 1

! , if 2
j  . So 1lim ( ... )jii

N N
N

S S
  2

1
1!

( ; ,..., )j
OP j

i i


 


  , because   is a pairing, if 

( )OP j   has no singletons and its number of blocks is equal to 2
j
. Thus, the odd moments vanish, since 

2 ( )OP j   is empty, when j is odd. We may conclude, by Lemmata 3.7 and 3.10, because the crossing 

ordered pairings have null contribution in the previous sum, and, respectively,  the non-crossing ordered 
pairings give the claimed contribution.  

 
Remarks 4.4 1) If, in particular, the  , , -indentedly independent sets of (selfadjoint) random 

variables are additionally ordered-free independent w.r.t. ( , )  , we get the multivariate CLT for the 

indented independent w.r.t. ( , , )  , in Hasebe’s sense, identically distributed quantum random variables. 

2) If   , we obtain the multivariate CLT for the  , - ordered independent identically distributed 

quantum random variables; and if the  , , -indentedly independent sets of (selfadjoint) random 

variables are additionally  , , -indentedly independent, we get the multivariate CLT for the ordered-free 

independent w.r.t. ( , )  , in Hasebe’s sense, identically distributed quantum random variables. 
 3) If   , we obtain the multivariate CLT for the  , - free independent identically distributed 

quantum random variables in [3][15, Th. 4.2]; and if the  , - free independent sets of (selfadjoint) 

random variables are additionally  -free independent, we get the multivariate CLT for the c-free 

independent w.r.t. ( , )  , in Bozejko-Leinert-Speicher’s sense [2], identically distributed quantum random 
variables. If     , we get the multivariate CLT for the free independent identically distributed quantum 
random variables [28]. 

4) Suppose, without loss of generality, the (*-)algebra involved in the quantum (*-)probability space 
( , , , )A     decomposes as a direct sum of vector spaces 1A D    s.t. D  is another (*-)  algebra 

including all (selfadjoint) random variables ,i
rX i I , r  ℕ. 

i) Take the (positive) linear functionals D  and D , given by restriction to D , denote them   and 

 , too, and consider that 0D  . Then we recover the multivariate CLT for  , - monotone independent 

identically distributed quantum random variables in the quantum (*-)probability space ( , , )D    from  [17, 
Th 4.2]. 

If these  , - monotone independent sets of (selfadjoint) random variables are additionally  -
monotone independent, we obtain the multivariate CLT for c-monotone (in Hasebe’s sense)[6] identically 
distributed quantum random variables; in particular, if   , we get the multivariate  CLT for monotone 
quantum random variables in  [16, Th 4.2]. 

ii) Take the (positive) linear functionals D , denoted by  ,  and :D  , given by restriction to 

D , and consider that 0D  . Then we recover the multivariate CLT for ,  - anti-monotone 

independent identically distributed quantum random variables in the quantum (*-)probability space 
( , , )D    (see, e.g., [17]). 

If these ,  - anti-monotone independent sets of (selfadjoint) random variables are additionally  -
anti-monotone independent, we obtain the multivariate CLT for c-anti-monotone (in Hasebe’s sense)[6] 
identically distributed quantum random variables; in particular, if   , we get the multivariate  CLT for 
anti-monotone quantum random variables in  [9][16, Th 4.2]. 
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iii) Take the (positive) linear functional :D   given by restriction to D , and consider that both 

0D   and 0D  . Then we recover the multivariate CLT for Boolean quantum random variables in 

the quantum (*-)probability space ( , )D  (see, e.g., [15,17]).  
5) The hypothesis of being identically distributed for the involved random vectors may be replaced by 

the pair (i)&(ii) below, as in the classical, Boolean, (c-)(anti-)monotone [11,16,17] or (c-)free cases [11,15, 
28] (see also [5, 33], for some short proofs), with essentially the same proof as above, but we do not detail 
this here: 

i) 1sup ( ... )jii
r r rX X   , 1sup ( ... )jii

r r rX X   , and 1sup ( ... )jii
r r rX X    (for all j, and 

all 1,..., ji i I ); 

ii)  there exist 1

1

lim ( )
N

i j
ij r rNN

r

q X X




   1

1

lim ( )
N

i j
ij r rNN

r

r X X




  , and 1

1

lim ( )
N

i j
ij r rNN

r

s X X




  . 

6) The combinatorial description of the joint moments of a Gaussian family (: multivariate normal 
distribution) in terms of all pairings instead of all non-crossing pairings (as a semicircular family [28] in the 
free probability theory), or all interval pairings (as a Bernoulli family in the Boolean probability theory),  or 
all (anti-)monotone pairings (as an arcsine family [9,16] in the (anti-)monotone probability theory) is often 
named the Isserlis formula [18] in the classical probability or mathematical statistics theory and the Wick 
formula in the quantum field theory (see, e.g., [30]). By analogy, the above formula describing the joint 
moments of such an indented (in particular, ordered) Gaussian family may be interpreted as an indented (in 
particular, ordered) Isserlis-Wick formula. This generalizes all previous purely non-commutative Isserlis-
Wick type formulae.  

 
In the same way, we can obtain operator-valued versions of these facts or other generalizations, but we 

do  expose these elsewhere. 
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