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 A MULTIVARIATE CENTRAL LIMIT THEOREM FOR C-MONOTONE 
QUANTUM  RANDOM VARIABLES 
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Academiei Române, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania. E-mail: vionescu@csm.ro  

Abstract. We prove a multivariate CLT in T.Hasebe’s  c-monotone probability theory [7,8], 
by generalizing our proof in [16] for the CLT in N. Muraki and Y.G. Lu’s monotone probability 
theory [23,24,20,21],  inspired by that in [15] for M. Bożejko and R. Speicher’s CLT [4,3] in the c-
free probability theory; which extended the combinatorial method described in [10,27]  for the CLT 
in the frame of D.-V. Voiculescu’s free probability theory [31-33].  

Key words: monotone partition, quantum probability space, non-commutative distribution, 
 , -monotone independence, Isserlis-Wick type formula. 

 

1. INTRODUCTION  

 
D.-V. Voiculescu’s prodigious free probability theory (see, e.g., [31-33], but also [10,27] for more 

information) marked a flourishing period in the quantum probability (: QP) domain and the related fields. 
See, e.g.,  [6,22,28] (but also [11]), as an introduction into this domain. The papers [30] and [25,26] by R. 
Speicher and, respectively, N. Muraki are among the important moments in this evolution. They concern the 
classification of the QP theories based on a quantum stochastic independence concept arising from a (quasi-) 
universal or natural product of quantum probability spaces depending or not on the order of the factors. 
Speicher demonstrated there are only three such theories, when that product is not order-dependent: R. L. 
Hudson and K. R. Parthasarathy’s Boson or Fermion probability theory, the free probability theory, and 
Speicher and W. von Waldenfels’ Boolean probability theory, corresponding to the tensor, free and Boolean 
product, respectively. Muraki proved there exist precisely five such theories if that product possibly depends 
on the order of its factors; the other two fundamental theories, additional to the aforementioned three, being 
Muraki [23,24] and Y.G.Lu’s [20,21] monotone probability theory and its dual, the anti-monotone 
probability theory, based on the monotone and respectively, the anti-monotone independence, emerging from 
the monotone and, respectively, the anti-monotone product.  

Important endeavours were undertaken in parallel to unify or generalize some of these fundamental 
theories.  

M. Bożejko and Speicher [4] generalized the free product and independence with respect to two states, 
via a product of quantum probability spaces non-dependent on the order of its factors. Their c-free product 
and independence [4,3] generalize also the Boolean product and independence, respectively, unifying the 
free and Boolean probability theory. 

By parallelizing Bożejko and Speicher’s c-free probability theory, T. Hasebe introduced [7] a 
generalization of the (anti-)monotone independence with respect to two states named the c-(anti-)monotone 
independence. As expected, this arises from a product of quantum probability spaces, called the c-(anti-) 
monotone product, dependent on the order of its factors. Consequently, if  1a  and 2a  are (c-) monotone 

independent random variables, it does not imply that 2a  and 1a  are, too.  
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Hasebe’s c-(anti-)monotone probability theory (see, e.g., [7, 8] and the references therein) is a dynamic 
research topic generalizing and unifying the (anti-)monotone and Boolean probability theory. Hasebe proved 
a univariate CLT in this frame for identically distributed random variables, with a  Kesten  (more generally, 
free Meixner) distribution (see, e.g., [11]) as limit. In analogy to Bożejko-Speicher theory again, the 
combinatorial structure of the c-(anti-)monotone independence is governed by the lattice of the (anti-) 
monotone partitions (which are ordered non-crossing ones), but it must distinguish between the outer and the 
inner blocks of such a partition. Notably, R. Lenczewski [18] determined the product of graphs (i.e., the c-
comb graphs) corresponding to the c-monotone independence, by generalizing the comb graphs through 
which L. Accardi, A. Ben Ghorbal and N. Obata [1] performed an important connection between Muraki-Lu 
monotone probability theory and the famous theory of Bose-Einstein condensation via the monotone CLT. 
See, e.g., [11] for the correspondence between the tensor, free, Boolean and monotone independence and the 
Cartesian, free, star and comb product of graphs, respectively, and further information.  

In the present Note, we prove the multivariate CLT for , -monotone random variables in Hasebe’s 
theory, by generalizing, with respect to an additional state, our elementary proof from [16] for the CLT in 
Muraki-Lu  monotone probability theory. This was inspired by the proof from [15] of the CLT for , -free 
random variables in Bożejko-Speicher theory; which extended the combinatorial moment method presented 
in [10] or [27] for the free CLT. The setting is essentially that from [16], but the simple random variables are 
slightly more complicated now, because the quantum probability space is endowed with a pair of states 
 ,  as in [4,3,15]. This time, we concentrate on the occurrence of internal peaks given by interval blocks 

in the ordered partition associated to a product of  -centered , -monotone independent random 
variables; via the weak independence in the sense of [5,12] again. The alternative proof by cumulants is 
shorter. Other limit theorems can be proved. We will expose these elsewhere. 

2. PRELIMINARIES 

 
We repeat for the reader’s convenience some well-known general information as in, e.g., [2,11,15,16, 

19,25-27], instead of sending directly to these references. (We abbreviate ’such that’ by ’s.t.’, and ’with 
respect to’ by ’w.r.t’).  Let S  be a finite totally ordered set (w.r.t. < ). Denote by ( )P S  the partitions of S ; 

call blocks the non-empty subsets defining a partition. If S is a disjoint union of non-void subsets iS , and 

( )P S   s. t.  = i , with some ( )i iP S  , we write  = i . If, for instance, S = 1{ ,..., }ns s , with 

[ 1 ... ns s  ], we say ( )P S   is irreducible, when   does not factorize as  1 2  , with ( )i iP S  , 

where 1S = 1{ ,..., }ps s  and 2S = 1{ ,..., }p ns s  are disjoint sets.We call pairing a partition in which every block 

has exactly two elements. For ,k l S , denote by ~k l  the fact that k  and l  belong to the same block of 

( )P S  . Recall that a partition   is called crossing if there are   1 1 2 2k l k l    in S  s.t. 

1 2~k k  1 2~l l ; otherwise,   is non-crossing. When   is non-crossing, and V is a block of  , say 

V is inner, if there exist another block W of  , and  ,k l W , s. t.  k v l  , for all v V , denoting this 

by W V ; otherwise, say V is outer. Denote by ( ) , and ( )   the inner, and,  respectively, outer blocks 

of  . Recall that a non-crossing partition   is called an interval partition if ( ) is empty. Denote by 

( )NC S , 2 ( )P S , 2 ( )NC S  and 2 ( )I S  the non-crossing partitions, the pairings, the non-crossing pairings, and 

the interval pairings of S , respectively.  
An ordered (coloured) partition of S  is a partition  = 1( ,..., )rP P  of S  endowed with an ordering 

(colouring) (: a permutation) of its blocks [19,25]; s being the order (colour) of the block sP . If ( )P S  , 

there exist !  ways to order (colour)  , where   is the number of blocks of  . We symbol the block as 

P  when its order (colour) is not specified. Denote by ( )OP S  the ordered (coloured) partitions of S . For 
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any 1 q r  , we may consider any  = 1( ,..., )rP P ( )OP S  as 
11{ ,..., , ,..., }

jq s sP P P P ( )P S , with some 

11 ,..., jq s s r   , by neglecting the ordering (colouring) of its blocks after the block qP . Denote by   

( )ONC S  the ordered (coloured) non-crossing partitions of S .  

A monotone partition [19,25] of S  is a partition  = 1( ,..., )rP P ( )ONC S  s.t. its ordering 

(colouring) is order-reflecting: for any pair of blocks k lP P  in  , it holds  k l . If ( )ONC S  is not 

monotone, we say   is non-monotone. We denote by 2 ( )M S the monotone pairings of S .  

When S  has m elements, abbreviate by 2 ( )P m , 2 ( )NC m , 2 ( )I m , ( )OP m , 2 ( )OP m , 2 ( )ONC m , 

and 2 ( )M m , the pairings, non-crossing pairings, interval pairings, the ordered (coloured) partitions, pairings, 

non-crossing pairings, and the monotone pairings of S , respectively. 2 ( )P m  is empty if m is odd. Recall 

that each non-crossing partition of {1,..., }m  has at least an interval; i.e., a block of consecutive indices 

which may be a singleton (:block having a single element). Remind the cardinality of 2 (2 )P p  or 2 (2 )NC p  

or 2 (2 )M p  equals the corresponding moment of a standard Gauss, respectively, semi-circular Wigner or 

(by a factor of !p ) arcsine distribution; i.e., (2 )!!p , respectively the Catalan number 

: (2 )! !( 1)!pc p p p    or  (2 )!!p , too.  

We consider a *- algebra as a (complex)  associative algebra with an involution * (i.e. a conjugate 
linear anti-automorphism). A linear functional   of a *- algebra A  is positive if ( ) 0a a   , for all a A .   

Let  A   be a (complex)  (*-) algebra, and  ,  be two states; i.e., linear (positive) functionals of A . We  

interpret ( , )A  , ),( A  or ( , , )A    as quantum  (*-) probability spaces, and the elements of A  as 

quantum random variables in view of  [31,27].  Let I  be an index set and  ℂ ,i i I    be the (*-) 

algebra (without a unit) freely generated by the complex field ℂ  and the non-commuting indeterminates 
, .i i I   Let ( )i i Ia a   be such a random vector with all (self-adjoint) ia A . The non-commutative joint 

distribution of a  w.r.t.   is aa  : , where :a  ℂ ,i i I A     is the unique  (*-) 

homomorphism s.t.  ( )a i ia   . The scalars 
1

( ... )
ji ia a  are viewed as the joint moments of a  w.r.t.  .  

If ( )i
N N i Ia a   and ( )i i Ia a  are random vectors in some quantum  probability spaces ( , )N NA  and 

( , )A  , we say ( )N Na  converges in distribution to a , denoting distr
Na a , if for all 1j  , and all 

1,..., ji i I ,  1

1
lim ( ... ) ( ... )j

j

ii
N N N i i

N
a a a a 


 . When a A  and ( ) 0a  , say a  is centered w.r.t.  , or 

 -centered.  When a  is centered  w.r.t. ,  , say it is  ,  -centered.  

If I is totally ordered, 1,..., ni i I and 1{ ,..., }ni i = 1{ ,..., }rk k with 1 ... rk k  , the ordered (coloured) 

partition corresponding to jj i  is 1( ,..., )rP P ( )OP n  given by { ; }j s jP s i k  [19]. When  iA A , 

Ii  are subalgebras, and 1 nw a a A    is a random variable, s.t. all 
jj ia A , for 1,..., ni i I , the 

ordered (coloured) partition associated to w is that corresponding  to jj i .  

If 1 2i i  or 1n ni i  , we say jj i has 1i , respectively, ni  as marginal peaks , and 1a , respectively, 

na  is marginal peak in w ; when there exists  2 p n   with 1 1p p pi i i    ( respectively, 1 1p p pi i i   ), 

we say jj i has pi  as internal peak (respectively, bottom), and pa  is an internal peak (respectively, a 

bottom) in w .When jj i has internal peaks, we say pa  , respectively, qa  is the left, respectively, right 

internal peak in w ,  if :p min 1 1{2 1; }s s ss n i i i      and :q max 1 1{2 1; }s s ss n i i i      .  
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We say 1 nw a a A   , with 
kk ia A , as before, is a simple random variable in ( , , )A     if w  is 

reduced (i.e., kk i  has not intervals: niii  ...21 ) , calling n  the length of w , and w  has a  -

centered marginal peak or a ,  -centered internal peak.  

We say IiiA )( has the  -factorization property by marginal peaks if, for all 2n , all 1 ... ni i  , and 

all 
kk ia A , it holds:  

i) 1 1 2( ) ( )( )n na a a a a    , when 1 2i i ; and ii) 1 1 1( ) ( ) ( )n n na a a a a       , when 

1n ni i  .  

Remark 2.1  Let 1 nw a a A    be reduced, with 
jj ia A . If IiiA )( has the  -factorization 

property by marginal peaks, and jj i  is strictly monotone on {1,..., }n , then 1( ) ( ) ( )nw a a    .  

We say IiiA )( has the ,  -decomposition property by internal peaks if, for all 1 ... ni i  , and all 

kk ia A , it holds:  

1( )na a   1 1 1( ) ( )p p p na a a a a      1 1 1[ ( ) ( )] ( ... ) ( ... )p p p p na a a a a a     , whenever 

2 p n   and 1 1p p pi i i   . In this case, we call 1 1 1p p na a a a      the subword obtained from w  by 

excluding pa  via  .  

The next definition concerning the notion of  , -monotone independence is inspired from [4,7,8,13-

16,18]. The dual concept of  , -anti-monotone independence is defined by reversing the order on I .  

Definition 2.2 Let ( , , )A    be a quantum probability space as above, and iA A , Ii  be  

subalgebras. The family IiiA )(  is  , -monotone independent (or  , -monotone, for short), if  it has the 

 -factorization property by marginal peaks, and the ,  -decomposition property by internal peaks. If 

iA S , Ii  are subsets, then ( )i i IS  is  , -monotone independent, if IiiA )( is  , -monotone 

independent, iA  being  the  subalgebra of A  generated by iS .  

In particular, the  , -monotone independence is Muraki-Lu’s monotone independence w.r.t.   [1, 
7-9,11,16,19-21,23-26]. The conditionally monotone (or c-monotone, for brevity) independence w.r.t. 
( , ), considered in [7,8,18],  involves both the monotone independence w.r.t.  , and the  , - 
monotone independence. 

3. JOINT  MOMENTS  OF   , -MONOTONE  QUANTUM  RANDOM  VARIABLES 

 
Let in this section I  be a totally ordered set, ( , , )A    be a quantum probability space as before, and 

iA A , Ii  be a family of  , -monotone independent subalgebras of A .  

The assertion of 1) in the first lemma is immediate by Remark 2.1. If 1 2i i  (respectively, 1n ni i  ), 

and pa  is the left (respectively, right) internal peak in w , then jj i  has no internal peaks on {1,..., 1}p   

(respectively, { 1,..., }p n ), and  

1 1( )pa a  = 1 1( ) ( )pa a     (respectively, 1( )p na a   = 1( ) ( )p na a    ), by 1). Thus, 2) below  

follows via the ,  -decomposition property by pa . This easy lemma simplifies the argument for Lemmata 

3.7-3.8  below.  
Lemma 3.1  Let 1 nw a a A    be reduced, s.t. every 

jij Aa  . 
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1) Suppose the map jj i  has no internal peaks. If 1 2i i  (respectively, 1n ni i  ), then na   

(respectively, 1a ) is a marginal peak in w , and 1( ) ( ) ( )nw a a    .  

2) Suppose the map jj i  has internal peaks.  

If 1 2i i , 1( ) 0a  (respectively, 1n ni i  , ( ) 0na  ),and pa  is the left (respectively, right) internal 

peak in w , then ( )w  1 1 1( ) ( )p p p na a a a a     .  

3) If w  is a simple random variable in ( , , )A   , then ( ) 0w  .  

We observe ( )i i IA  is weakly independent in ( , )A   in the sense of [5,12]; remind the weak-

independence has the meaning below.  
Definition 3.2 Let ( , )B   be a quantum probability space as before  and iB B , Ii  be 

subalgebras. The family ( )i i IB   is weakly independent in ( , )B  ,  if 1( ... )nx x  1 1( ... ) ( ... )p p nx x x x   , 

for all n > 1p  , all ji I , all 
jj ix B , s.t. the sets },...,{ 1 pii  and },...,{ 1 np ii  are disjoint. If iB S , Ii  

are subsets, then ( )i i IS  is weakly independent, if ( )i i IB  is weakly independent; iB  being  the  subalgebra of 

B  generated by iS .  

The second lemma extends [16, Lemma 3.2].  
Lemma 3.3 ( )i i IA  is weakly independent in ( , )A  ; i.e., 

1( )na a   1 1( ) ( )p p na a a a        , for all n > 1p  , all ji I , all 
jj ia A , s.t. the sets 

},...,{ 1 pii  and },...,{ 1 np ii  are disjoint. 

Proof. It suffices to suppose niii  ...21 . The  -factorization property by marginal peaks implies 

the assertion for 2n  ; and also for 3n , 2p   and 1 2 3i i i  . If 3n , 2p   and jj i  is strictly 

monotone on {1,...,3} , the assertion results by Remark 2.1 . When 2a  is a peak in 1 2 3a a a , then 

1 3( )a a  1 3( ) ( )a a   and 1 2( )a a  1 2( ) ( )a a   according to our assertion for 2n  ; thus, 

1 2 3( )a a a  1 2 3( ) ( ) ( )a a a   = 1 2 3( ) ( )a a a   due to the ,  -decomposition property by 2a . And for 

3n  the case 1p   follows as the 2p   case. 

Let 3n  . Suppose the statement true for any nr  . We may conclude by induction due to the 
inferences below. 

If 1 2i i , we get 1( )na a   1 1( ) ( )p p na a a a         through the  -factorization property by 

marginal peaks (only; for 1p  ), and the induction hypothesis for 2p  . 

When 1 2i i  and jj i  has no internal peaks, then this map is strictly increasing on {1,..., }n ; thus, 

1( )na a   1 1( ) ( )p p na a a a         by  Remark 2.1 or Lemma 3.1. 

Otherwise, consider an internal peak ka in 1 na a   . If 1p k  , the inductive hypothesis implies 

1 1 1( )k k na a a a      1( )pa a  1 1 1( )p k k na a a a     and 1 1( )ka a     1 1 1( ) ( )p p ka a a a        

; thus, the ,  -decomposition property by ka  imposes 

1 1 1( ) ( )k p k k na a a a a        + 1 1[ ( ) ( )] ( )k k p ka a a a      1( ... )k na a   1( )p na a    and then 

1( )na a   1 1( ) ( )p p na a a a        . 

If { 1, }p k k  , the ,  -decomposition property by ka  again entails  

1( )na a   1 1 1( ) ( )k k k na a a a a      1 1 1[ ( ) ( )] ( ... ) ( ... )k k k k na a a a a a       
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1 1 1( ... ) ( ) ( ... )k k k na a a a a     1 1( ) ( )p p na a a a        , via the induction hypothesis and the  -

factorization property by marginal peaks. 
If 1p k  , the inductive hypothesis implies as above 

1 1 1( )k k na a a a      1 1 1( )k k pa a a a    1( )p na a    and  

1( )k na a    1( )k pa a   1( )p na a   ; therefore, 1( )na a   1 1( ) ( )p p na a a a         by 

applying twice the ,  -decomposition property by ka , for 1 pa a    and 1 na a   .     

For 1 nw a a A    s.t. every 
jij Aa  , we say w  has ka  as singleton when j ki i , for any j k .                    

The following statement slightly generalizes [16, Lemma 3.3]. 
Lemma 3.4 Let 1 nw a a A   , s.t. every 

jij Aa  , and w has a singleton ka  which is ,  -

centered. Then ( ) 0w  . 

Proof. It suffices to suppose w  is reduced. If  1,k n , the assertion follows by the weak-

independence (i.e., Lemma 3.3), and the  -centeredness of ka . It remains to consider 12  nk . For 

3n , the assertion results via the weak-independence (i.e., Lemma 3.3), Lemma 3.1, and the  , -

centeredness of ka .     

Suppose the statement true for any 1 ra a A     of length nr  ; check it for 1 nw a a A   , as 

below.  

If 1n ni i  , the  -factorization property by na  implies 1 1( ) ( ) ( )n nw a a a    =0, because 

1 1( ) 0na a      by the induction hypothesis or the weak-independence and the  -centeredness of ka . 

If 1n ni i  , and jj i  has no internal peaks, then this map is strictly decreasing on {1,..., }n ; so, 

1( )k na a a    1( ) ( ) ( ) 0k na a a      by Remark 2.1 or Lemma 3.1  and the  -centeredness of 

ka .  

Alternatively, when the singleton ka  is even a peak in w , then w  is a simple random variable in 

( , , )A   , and ( ) 0w  , via Lemma3.1. Otherwise, consider the right internal peak pa  in w . Thus, 

1 1 1( )p p na a a a    0, by the inductive hypothesis. Moreover, the map jj i  is strictly decreasing on 

{ , 1,..., }p p n  and 1( )p na a    1( ) ( )p na a     by the Remark 2.1. If 1p k  , we get 

1 1( ) 0pa a      by the induction hypothesis or the weak-independence (i.e., Lemma 3.3); if 1p k  , we 

get 1( )p na a    0 by the  -centeredness of ka . Consequently, ( ) 0w  via the ,  -decomposition 

property by pa . 

If ( , , )A     is a quantum probability space as before, and 1 2,x x A  are random variables s.t. one of 

them is ,  -centered, then 1 2 2 1 2( ) ( , )x x k x x  , and 1 2 2 1 2( ) ( , )x x k x x  ; whenever, e.g., 2k and 

2k  are 

the tensor/free/Boolean/monotone joint cumulants (see, e.g., [2, 27]) w.r.t.  , , respectively, of order two. 
In the sequel, we may use any of these choices. 

In general, the scalars involved below ),...,( 1 nxxk , for 2 ( )M n  , can be described as follows; 

parallelizing the c-free case ( with 2 ( )NC n  ), see, e.g. [4, 15] . 

1) If   has a single block, then that is an outer block of  , and 1 2( , )k x x := 2 1 2( , )k x x
; 

2) If     , with 2 ( )M i   and 2 ({ 1,..., })M i n   , then  

    ),...,( 1 nxxk := ),...,( 1 ixxk ),...,( 1 ni xxk  ; 
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3) If   contains the block (1, )n  , and the subpartition   {2,..., 1}n   , then  

    1( ,..., )nk x x := 2k 1 2 1( , ) ( ,..., );n nx x k x x   where, more generally, for a subpartition   of 

2 ( )M n  , with 2 ( )M S  , and {1, ..., }S s , the scalars ( , )ik x i S  , can be described in the 

following way.  

1) If    has a single block, then that is an inner block of  , and 1 2( , )k x x := 2 1 2( , )k x x ; 

2) If     , with 2 1( )M S  , and 2 2( )M S  , then  

   1( ,..., )sk x x := 1 2( , ) ( , )i ik x i S k x i S     . 

We illustrate the next lemma by the following crossing partitions in 2 ( )OP n  associated to 

1 nw a a A   .  

Examples 3.5  1) For 10n  , let 1 2 3 4 5((1,6) , (2,3) , (5,10) , (8,9) , (4,7) )  . Then, in reduced form, 

w = 1 2 4 5 6 7 9 10a c a a a a c a ,with 
2232 : iAcaa  and 

98 9 9: ia a c A   arising from the intervals 

2 2: (2,3)I  , and  9 4: (8,9)I   of   (but 2c , 9c are not peaks), and 4a , 7a as internal peaks. So, w  is a 

simple random variable in ( , , )A    , and ( ) 0w  , by , say,  Lemma 3.1. 

2) For 16n  , let 1 2 3 4 5 6 7 8((1,10) , (9,16) , (6,13) , (2,3) , (7,8) , (14,15) , (4,5) , (11,12) )  . Now,  

w = 1 2 5 6 7 9 10 11 13 15 16a c c a c a a c a c a , under the reduced form, with 
54 5 5: ia a c A  ,

77 8 7: ia a c A  , 

1111 12 11: ia a c A  , and 
1514 15 15: ia a c A   as internal peaks arising from the intervals 5 7: (4,5)I  ,   

7 5: (7,8)I  , 11 8: (11,12)I   and 15 6: (14,15)I   of  , respectively. One uses Lemma 3.1. If one begins by 

excluding the left internal peak via  , one gets 5 1( ) ( ) ( )w c w   ,where 1w is the subword of w  

corresponding to 1 5: \{ }I  and having 
2232 : iAcaa  as the left internal peak arised from 2 4: (2,3)I  . 

So, 1 2 2( ) ( ) ( )w c w   , where 2w is the subword of 1w  corresponding to 2 1 2: \{ }I  which has 

7c as the left internal peak. Then 2 7 3( ) ( ) ( )w c w   , where 3w  is the subword of 2w  corresponding to 

3 2 7: \{ }I  ; but, 3w has 6a  as internal peak . Hence 3w  is a simple random variable in ( , , )A   , and 

3( ) 0w  , by, say, Lemma 3.1 . Another way, by excluding, for instance, the internal peaks from the right 

one, via  , one gets ( )w  15 11 4( ) ( ) ( )c c w   ; where 4w is the subword of w  corresponding to 

4 15 11: \{ , }I I  , for which 13a  is a  peak. Hence 4w  is a simple random variable in ( , , )A   , and 

4( ) 0w  , too .  

Due to Lemma 3.1, we simply extend below [16, Lemma 3.4] and give another short proof for it. 

Lemma 3.6 Let 1 nw a a A   , s.t. all 
jij Aa  are ,  -centered, and the ordered partition   

associated to w  is a crossing  pairing. Then ( ) 0w  . 
Proof. In view of Lemma 3.3 (the weak independence) and Lemma 3.1, it remains to consider:   is 

irreducible, 1 2i i , 1n ni i  , w  has (under its reduced form) only internal peaks arising from some interval 

blocks of  ; and, under its reduced form, any subword obtained from w  by excluding such an internal peak 
via   has no other internal peaks arising from interval blocks of   which does not occur in w .     

Let 0 1, , ..., rc c c be all these internal peaks in the reduced form of w , considered from the left to the 

right internal peak; let kI  be the interval block of   corresponding to kc . Lemma 3.1 successively implies 

for every kc  (with 1 , ..., rw w  under the reduced form): 

0 1( ) ( ) ( )w c w   = 0 1 2( ) ( ) ( )c c w   =...= 0 1( ) ( ) ( )r rc c w     = 0 0( ) ( ) ( )rc c w    ; where  
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1 , ..., rw w  (having 1 , ..., rc c , respectively, as the left internal peak)  and 0w  are the obvious 

subwords of w  corresponding to the ordered subpartitions 1 , ..., r   and 0  of  , respectively, given by 

1 0: \{ }I  , 1 1: \{ }j j jI    , for 2,...,j r , and 0 : \{ }r rI  . 

Thus, 1 , ..., r   and 0  are crossing  pairings; and 0  has no intervals giving internal peaks in 0w . 

Hence 0w  is a simple random variable in ( , , )A   ; and  0( ) 0w  , by Lemma 3.1.  

Another proof. The above proof can be slightly modified as follows. In view of Lemma 3.3 (the weak 

independence) and Lemma 3.1, it remains to consider:   is irreducible, 1 2i i , 1n ni i  , and w  has (under 

its reduced form) only internal peaks arising from some interval blocks of  . 
For 8n  , there are involved only the following crossing pairings: 1 2{(1,5) , (4,8) , (2,3) , (6,7) }s t , 

1 2{(4,8) , (1,5) , (2,3) , (6,7) }s t , 1 2{(4,8) , (1,7) , (2,3) ,(5,6) }s t 2 (8)OP , with 3 , 4s t  . For each of them, the  

interval block (2, 3) s  gives the left internal peak c  in the reduced form of w . The subword w  obtained 

from w  by excluding c  via   has 2a  as internal peak in the first two cases, and 1a  as marginal peak in the 

rest. Thus, w  is a simple random variable in ( , , )A   , and ( ) ( ) ( )w c w    =0 by Lemma 3.1, always. 

Let 8n  , and the statement true for all np . Then, for 1 nw a a A   , the inferences below help 

to conclude by induction. 

Let 
rirrr Acaa  :1  be, for instance, the right internal peak in the reduced form of w , arising (as a 

singleton) in w  from an interval ( , 1)r r   , with 1 1 2r r r ri i i i     . Then we may express  

1 r nw a xc ya ; where ,x y  are void or arbitrary  products of 
jij Aa   with ( ) 0ja  ( )ja ; but, y  (as 

non-void factor in w ) has no internal peaks. By the reducing of ,x y , and Lemma 3.1, we get  

( )w  1( ) ( )r nc a xya  .The ordered subpartition of   associated to 1 na xya  is  crossing and belongs to 

2 ( 2)OP n  . Hence ( ) 0w  , by the inductive  hypothesis. 

We illustrate the next lemma by the following partitions in 2 ( )ONC n  associated to 1 nw a a A   . 

(Compare with [16, Ex. 3.5].) 
Examples 3.7 1) If 4n  , let 1 1 2((2,3) , (1, 4) )   and 2 1 2((1, 4) , (2,3) )  , which are non-

monotone and, respectively,  monotone. Their interval gives 
22 3 2: ia a c A  . Thus, 1 2 4w a c a  as reduced 

word. For 1 , we get 1 2 4( ) ( ) ( )w a c a   =0, because 4a  is a marginal peak in w , and this is a simple 

random variable in ( , , )A   .  For 2 , remark 2c  is an internal peak in w ; so, Lemma 3.1 implies 

2 1 4( ) ( ) ( )w c a a   2 2 3 2 1 4( , ) ( , )k a a k a a  =
2 1 4( ,..., )k a a . 

2) For 6n  , let   be any of the monotone pairings  

1 2 3((1,6) ,(2,3) ,(4,5) ) , 1 2 3((1,6) ,(4,5) ,(2,3) ) , and 1 2 3((1,6) ,(2,5) ,(3,4) ) . For each of them, the interval 

block 3( , )   gives the unique internal peak c  in the reduced form of w ; thus, ( ) ( ) ( )w c w    , via 

Lemma 3.1, where w  is the subword obtained from w  by excluding c  via  . The computation of 

( )w  reduces to the above example for 4n  , implying ( )w  1 6( ,..., )k a a  in each case. 

3) For 8n  , let   be any of the following partitions: 1 2 3 4 2((4,5) , (1,8) , (2,3) ,(6,7) ) (8)ONC  (non-

monotone); 1 2{(1,8) , (2,5) , (3,4) , (6,7) }s t , 1 2{(1,8) , (4,7) , (2,3) ,(5,6) }s t , 1 2 2{(1,8) , (2,7) , (3,4) , (5,6) } (8)s t NC , with 

3 , 4s t  , and 1 2 3 4((1,8) , (6,7) (2,5) , (3,4) ) , 1 2 3 4 2((1,8) , (2,3) , (4,7) , (5,6) ) (8)ONC  (monotone). For each of 

them, the interval block 4( , )   gives the left or right internal peak c  in the reduced form of w ; so, 

( ) ( ) ( )w c w    , via Lemma 3.1 again; where w  is the subword obtained from w  by excluding c  via 
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 . Then w  has a marginal peak in the non-monotone case, being a simple random variable in ( , , )A   , 

and ( ) 0w    via Lemma 3.1. But, for the monotone cases, the computation of ( )w  reduces to the 

examples before for 6n  ; thus one finally gets  ( )w  1 8( ,..., )k a a  always. 

Due to Lemma 3.1 again, we easily get the adequate extension of [16, Lemma 3.6] by the same 
argument. 

Lemma 3.8 Let 1 nw a a A   , s.t. all 
jij Aa  are ,  -centered, and the ordered  partition   

associated to w  is a non-crossing pairing. Then ( )w  0, if   is not monotone; but ( )w  1( ,..., )nk a a , 

if   is  monotone. 
Proof. In view of Lemma 3.3 (the weak independence), we may consider (1, )n   . If, under its 

reduced form, w  has  marginal peaks,  or 1 2i i , 1n ni i  ,  and w  has  an internal peak pa  that does not 

arise from an interval block of  , then w  is (under its reduced form)  a simple random variable in 

( , , )A   ; and observe:   has a pair of blocks ( , ) ( 1, )k k    , with {1, }k p , or ( , ) ( 1, )l l    , with 

{ , }l p n , for which the colouring does not reflect the order. Thus,   is not monotone then, and ( )w  0, 
by  Lemma 3.1.  

Therefore, the assertion being trivial for 2n  , it remains to consider that (1, )n   , 1 2i i , 

1n ni i  , and w  has (under its reduced form) only internal peaks arising from some interval blocks of  . 

Note that, for any pair of blocks k lP P  in   involving such an interval block giving the left (right) internal 

peak in w , the colouring is order-reflecting: k l  . 
For 4n ,6 , see Examples 3.7. For 8n  , there are only the following pairings, besides of the 

partitions in Examples 3.7: 

1 2 3 4 2((4,5) , (1,8) , (6,7) ,(2,3) ) (8)ONC (non-monotone);
1 2{(1,8) , (2,3) , (4,5) , (6,7) } (8)p q r NC ,with 

2 , , 4p q r  , and 1 2 3 4 2((1,8) , (2,7) ,(3,6) , (4,5) ) (8)ONC  (monotone). For each of these pairings, the 

interval block 4( , )   also gives the left or right internal peak c  in the reduced form of w . Thus 

( ) ( ) ( )w c w    by Lemma 3.1.Then the subword w  obtained from w  by excluding c  via   has a 

marginal peak in the non-monotone case again; when w  is a simple random variable in ( , , )A   , and 

( ) 0w    via Lemma 3.1. And for the monotone cases, the computation of ( )w  reduces again to the 

three cases for 6n   from Examples 3.7; thus, one finally gets  ( )w  1 8( ,..., )k a a  always. 

Let 8n  . Suppose the assertion true for all np . To conclude by induction, remark the next facts. 

Let 1 :
ll l l ia a c A    be, for instance, the left  internal peak in (the reduced form of ) w , arising (as a 

singleton) in w  from an interval ( , 1)l l   , with 1 1 2l l l li i i i     . Therefore we may express  

1 l nw a xc ya ; where ,x y  are void or arbitrary  products of 
jij Aa   with ( ) 0ja  = ( )ja ; but, x  (as 

non-void factor in w ) has no internal peaks. After reducing x  and y , we infer again 

( )w  1( ) ( )l nc a xya   by Lemma 3.1.The ordered subpartition of   associated to 1 na xya  belongs now to 

2 ( 2)ONC n  . 

If   is not monotone, this ordered subpairing of   is not monotone; hence ( )w  0, by the inductive  
hypothesis. If   is monotone, this ordered subpairing of   is monotone, too. We may proceed as in [16, 
Lemma 3.6]. Let 2 ({2,..., 1} \{ , 1})M n l l    be the ordered sub-partition of   associated to xy. 

Since{(1, ) }n   =: 2 ({1,..., } \{ , 1})M n l l    is the ordered sub-partition of   associated to 1 na xya , 

the induction hypothesis implies 
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1( )na xya  1 2 1 2 1( , ,..., , ,..., , )l l n nk a a a a a a     = 2 1 2 1 2 1( , ) ( ,..., , ,..., )n l l nk a a k a a a a
    . 

Thus, 

( )w  2 1( , )l lk a a
 2 1 2 1 2 1( , ) ( ,..., , ,..., )n l l nk a a k a a a a

    = ),...,( 1 naak ; because   ={(1, ) }n   , 

with :  {( , 1) }l l   and  2 ({2,..., 1})M n   .           

Lemma 3.9 Let ia = ( )s
i s Sa  , Ii  be random vectors in a probability space ( , , )A   , such that 

{ , }s
ia s S A  , Ii are  , -monotone independent sets of random variables in ( , , )A   , and 

ia = ( )s
i s Sa  , Ii have the same joint distribution w.r.t.  , . Then the joint moments of  ( )i i Ia   w.r.t.   

are invariant under order-preserving injective maps; i.e., for all n , all 1,..., ns s S , all 1,..., ni i I  and all 

order-preserving injection  1: ,..., ni i I  , it holds   1

1
( ... )n

n

ss
i ia a = 1

1( ) ( )( ... )n

n

ss
i ia a  . 

Proof. Since ia , Ii are identically distributed  w.r.t.  , we get the statement if all ki  are equal. 

Otherwise, assume the statement true for any  r n .   
Let consider kk i  has not intervals. 

If  1n ni i  , the statement for n  results from the  -factorization property by the marginal peaks ni  and 

( )ni , the inductive hypothesis for 1n  , and the hypothesis cited above. 

If 1n ni i  , and kk i  has no internal peaks, then this map and ( )kk i are strictly decreasing; so, 

the statement for n  issues from Remark 2.1 or Lemma 3.1 and the same non-inductive hypothesis cited 
above. 

If 1n ni i  , but kk i  has an internal peak 2 p n   s.t. 1 1p p pi i i   , then the statement for n  

follows via the ,  -decomposition property by the internal peaks pi  and ( )pi , and the inductive 

hypothesis for 1n  , 1p   and n p ; because ia , Ii are identically  distributed  w.r.t. ,  . 

When kk i  has intervals, the statement for n  results by the same argument as before, after a 

reducing of the random variables from both sides. Therefore, the statement being clear for 3n , we  
conclude by induction. 

4. C-MONOTONE GAUSSIAN FAMILY AND MULTIVARIATE CLT 

 

Let I  be an arbitrary index set. We remind a scalar matrix ,{ }ij i j Iq q  is positive if and only if 

,
, 1

0
k l

n

i i k l
k l

q  


 , for all n , all 1,..., ni i I ,  and all 1,..., n  ℂ.  

The following definition is inspired from [2, 4, 5, 7, 12-16, 27]. If the two scalar matrices are the same, 
we recover the notion of monotone Gaussian family (see, e.g. [16, Def 4.1]). In particular, when r is 0 , we 
get (from [15, Def 4.1], too) the notion of Bernoulli (: Boolean Gaussian) family of covariance q , involving 

the interval pairings 2 ( )I j  ; an empty product being equal to 1 by convention.  

Definition 4.1 Let ,{ }ij i j Iq q   and ,{ }ij i j Ir r   be (positive) scalar matrices. Let ( , )A   be a 

quantum (*-) probability space. A family of (selfadjoint) random variables ( )i i Ig g   in this is called a 

centered  c-monotone Gaussian family of  covariances q and r, if its distribution is of the following  form, 

for all j  ℕ and all 1,..., ji i I :  
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1
( ... )

ji ig g =
 

1

2

1
!

( ,..., )
ji i

M j

k g g

 ; where  

1
( ,..., )

ji ik g g :=
( , ) ( ) ( , ) ( )

k l k li i i i
k l k l

q r
  

 
 

.  

Theorem 4.2 Let ( , , )A    be a quantum (*-)probability space, and { , }i
rX i I A  , r  ℕ be a 

sequence of   , -monotone independent sets of (selfadjoint) random variables in this, s.t. rX = ( )i
r i IX   

has the same joint distribution for all r  ℕ , and all variables are centered, both  w.r.t.  , . Consider, 

for every 1N  , the sums 1

1

:
N

i i
N rN

r

S X


  A , and : ( )i
N N i IS S   as random vector in ( , )A  . Denote the 

covariances of the variables w.r.t.  ,  by ,{ }ij i j Iq q   and ,{ }ij i j Ir r  ; i.e., :ijq  ( )i j
r rX X , and 

:ijr  ( )i j
r rX X . Then distr

NS g ;  where ( )i i Ig g   is a centered  c-monotone Gaussian family of 

(positive) covariances q and r.  

Proof. Since all rX  have the same joint distribution w.r.t.  ,  and form  , -monotone 

independent sets, Lemma 3.9 implies for all fixed jℕ and all 1,..., ji i I , that the moment 1

1
( ... )j

j

ii
r rX X  

depends only on the ordered partition ( )OP j   corresponding to 1( ,..., )jr r  ℕ j . We may denote 

1

1
( ... )j

j

ii
r rX X =: 1( ; ,..., )ji i  . The reasoning repeats now the argument from [15,16], in light of the other 

lemmata from the previous section. We expose it for the reader’s convenience. 
Thus,  

   1( ... )jii
N NS S =  1

1

1

1

,..., 1

( ) ( ... )j

j

j

N
iij

r rN
r r

X X


 =
 

1
1( ) ( ; ,..., )j

N jN
OP j

C i i



 

 ,  

as in [4,15,16,19]; where   denotes the number of blocks in  ; and the number of representatives of the 

equivalence class corresponding to the involved partition : ! !( )!NC N N     grows asymptotically 

like N  for large N . Lemma 3.4 implies that every partition with singletons has null contribution in the sum 

above. But the partitions without singletons have 2
j   blocks, and the limit of the factor 1( ) j

NN
C  is 0, if 

2
j  ; and is 1

! , if 2
j  . So 1lim ( ... )jii

N N
N

S S
  2

1
1!

( ; ,..., )j
OP j

i i


 


  , because   is a pairing, if 

( )OP j   has no singletons and its number of blocks is equal to 2
j
. Thus, the odd moments vanish, since 

2 ( )OP j   is empty, when j is odd. We may conclude, by Lemmata 3.6 and 3.8, because the crossing 

ordered pairings or the non-monotone non-crossing ordered pairings have null contribution in the previous 
sum, and, respectively,  the  monotone pairings  give the claimed contribution.  

 
Remarks 4.3 1) If, in particular, the  , -monotone sets of (selfadjoint) random variables are 

additionally  -monotone, we get the multivariate CLT for c-monotone identically distributed quantum 
random variables. 

2) If   , we obtain the multivariate  CLT for monotone quantum random variables in  [16, Th 4.2].  

3) If  0 , we get the multivariate  CLT for Boolean quantum random variables (as we do from [15, 
Th 4.2]).  

4) The hypothesis of being identically distributed for the involved random vectors may be replaced by 
the pair (i)&(ii) below, as in the classical, Boolean, monotone [11,15,16] or (c-)free cases [11,15,27] (see 
also [6,31], for simple proofs), with essentially the same proof as above, but we do not detail this here: 

i) 1sup ( ... )jii
r r rX X   , 1sup ( ... )jii

r r rX X    (for all j, and all 1,..., ji i I ); 



Valentin IONESCU 
 

12 

ii)  there exist 1

1

lim ( )
N

i j
ij r rNN

r

q X X




   and 1

1

lim ( )
N

i j
ij r rNN

r

r X X




  . 

5) By reversing the order on I , we get the assertions corresponding to the multivariate CLT for the 
 , - anti-monotone or c-anti-monotone random variables (in terms of bottoms instead of peaks) via the 
anti-monotone partitions. 

6) The combinatorial description of the joint moments of a Gaussian family (: multivariate normal 
distribution) in terms of all pairings instead of all non-crossing pairings (as a semicircular family [27] in the 
free probability theory), or all interval pairings (as a Bernoulli family in the Boolean probability theory),  or 
all monotone pairings (as an arcsine family [9,16] in the monotone probability theory) is often named the 
Isserlis formula [17] in the classical probability or mathematical statistics theory and the Wick formula in the 
quantum field theory (see, e.g., [29]). By analogy, the above formula describing the joint moments of such a 
c-(anti-) monotone Gaussian family may be interpreted as a c-(anti-) monotone Isserlis-Wick formula.  

In the same way, we can obtain operator-valued versions of these facts or other generalizations, but we 
do expose these elsewere. 
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