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Abstract. We prove a multivariate CLT in N. Muraki and Y.G.Lu ’s monotone probability 
theory [18,19, 20,16,17] inspired by our proof in [13] for M. Bożejko and R. Speicher’s CLT [3] in 
the c-free probability theory, which extended the combinatorial method exposed by F. Hiai and D. 
Petz [9] or A. Nica and R. Speicher [22]  for CLT in the setting of D.-V. Voiculescu’s free probability 
theory [26, 27].  
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1. INTRODUCTION  

 

During the prodigious development of D.-V. Voiculescu’s free probability theory [26, 27], R. Speicher 
proved [25] the existence of only three theories in the quantum probability domain (see, e.g., [5] as an 
introduction into), based on an analogue of the stochastic independence from the classical (:Kolmogorovian) 
probability theory, as the central concept, arising from a product of quantum probability spaces (: universal, 
in a certain natural sense, associative and not depending on the order of its factors); these being R. L. Hudson 
and K. R. Parthasarathy’s Boson or Fermion probability theory, the free probability theory, and R. Speicher 
and W.von Waldenfels’ Boolean probability theory. 

But then, by previous investigations on some toy Fock spaces, concerning either a non-commutative de 
Moivre-Laplace theorem or CLTs  for the quantum Bernoulli processes, N. Muraki (on his monotone Fock 
space) [18] and Y.G.Lu (on the interacting free Fock space)[16,17] independently discovered the monotone 
quantum Brownian motion: this being governed by a probability law which is neither Gauss, nor semi-
circular Wigner, nor Bernoulli distribution, but a scaled symmetric arcsine distribution. 

Muraki deduced [20] the quantum concept of stochastic independence (:the monotone independence) 
hidden in these arcsine de Moivre-Laplace theorem and Brownian motion, and proved a univariate CLT, in 
C*-algebraic frame, for monotone independent identically distributed random variables with a standard 
arcsine distribution as limit. He also constructed [19] the corresponding monotone product of quantum C*-
probability spaces, and U.Franz proved [6] this product is universal in the same natural sense, associative, 
but depends on the order of the factors. Thus, if  1a  and 2a  are monotone independent random variables, it 

does not imply that 2a  and 1a  are, too. 

Then, Muraki [21] revealed that the combinatorial structure of the monotone independence is governed 
by certain non-crossing ordered partitions (: the monotone partitions) and completed Speicher’s result [25] 
by demonstrating there are exactly five quantum probability theories based on a corresponding notion of 
algebraic stochastic independence emerging from a product of quantum probability spaces which is 
universal, in a certain natural sense, associative and possibly depends on the order of its factors; by adding 
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thus conclusively to the three fundamental theories before, the monotone probability theory and its dual (by 
reversing the order), the anti-monotone probability theory, which are as important as the other three.  

In this sense, besides the papers already cited or the others  [2, 7, 8, 10, 15, 24] and the bibliography 
therein, we mention only that L. Accardi, A. Ben Ghorbal and N. Obata [1] performed an important 
connexion between Muraki-Lu monotone probability theory and the famous theory of Bose-Einstein 
condensation from the condensed matter physics, by generalizing the comb lattices to comb graphs and via 
the monotone central limit theorem. For the present dynamic development of this fundamental quantum 
probability theory, see, e.g., the recent [7] and the rich list of references therein. 

In this Note, we prove the multivariate CLT for monotone random variables in Muraki-Lu theory, 
inspired by our proof in [13] of the CLT  in Bożejko-Speicher c-free probability theory, which extended the 
combinatorial moment method presented in [9] or [22] for the free CLT; thus, we focus on the occurence of 
the interval blocks in the ordered partition now associated to a product of centered monotone independent 
random variables, via the weak independence in the sense of [4,11]. The alternative proof by cumulants is 
shorter. Other limit theorems can be proved. We will detail these elsewhere. 

2. PRELIMINARIES 

 

We recall some well-known general information as in, e.g., [2,6,10,13,15,21,22]. (We abbreviate ’such 
that’ by ’s.t.’, and ’with respect to’ by ’w.r.t’).  Let S  be a finite totally ordered set (w.r.t. < ). Denote by 

( )P S  the partitions of S ; call blocks the non-empty subsets defining a partition. If S is a disjoint union of 

non-void subsets iS , and ( )P S   s. t.  = i , with some ( )i iP S  , we write  = i . If, for 

instance, S = 1{ ,..., }ns s , with 1 ... ns s  , we say ( )P S   is irreducible, when   does not factorize as  

1 2  , with ( )i iP S  , where 1S = 1{ ,..., }ps s  and 2S = 1{ ,..., }p ns s  are disjoint sets.We call pairing a 

partition in which every block has exactly two elements. For ,k l S , denote by ~k l  the fact that k  and 

l  belong to the same block of ( )P S  . Recall that a partition   is called crossing if there are   

1 1 2 2k l k l    in S  s. t. 1 2~k k  1 2~l l ; otherwise,   is non-crossing. When   is non-crossing, and 

V is a block of  , say V is inner, if there exist another block W of  , and  ,k l W , s. t.  k v l  , for all 

v V , denoting this by W V ; otherwise, say V is outer.  
An ordered (coloured) partition of S  is a partition  = 1( ,..., )rP P  of S  endowed with an ordering 

(colouring) (: a permutation) of its blocks [15,21]; s being the order (colour) of the block sP . If ( )P S  , 

there exist !  ways to order (colour)  , where   is the number of blocks of  . We symbol the block as 

P  when its order (colour) is not specified. Denote by ( )OP S  the ordered (coloured) partitions of S . For 

any 1 q r  , we may consider any  = 1( ,..., )rP P ( )OP S  as 
11{ ,..., , ,..., }

jq s sP P P P ( )P S , with some 

11 ,..., jq s s r   , by neglecting the ordering (colouring) of its blocks after the block qP . Denote by   

( )ONC S  the ordered (coloured) non-crossing partitions of S . 

A monotone partition [15,21] of S  is a partition  = 1( ,..., )rP P ( )ONC S  s.t. its ordering 

(colouring) is order-reflecting: for any pair of blocks k lP P  in  , it holds  k l . Denote by ( )B   the 

blocks of  . If ( )ONC S  is not monotone, we say   is non-monotone. We denote by 2 ( )M S the 

monotone pairings of S .  
When S  has m elements, abbreviate by 2 ( )P m , 2 ( )NC m , ( )OP m , 2 ( )OP m , 2 ( )ONC m , and 2 ( )M m , 

the pairings, non-crossing pairings, the ordered (coloured) partitions, pairings, non-crossing pairings, and the 
monotone pairings of S , respectively. 2 ( )P m  is empty if m is odd. Recall that each non-crossing partition 
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of {1,..., }m  has at least an interval; i.e., a block of consecutive indices which may be a singleton (:block 

having a single element).The cardinality of 2 (2 )P p  or 2 (2 )NC p  or 2 (2 )M p equals the corresponding 

moment of a standard Gauss, respectively, semi-circular Wigner or (by a factor of !p ) arcsine distribution; 

i.e., (2 )!!p ,  respectively the Catalan number : (2 )! !( 1)!pc p p p    or (2 )!!p , too.  

We consider a *- algebra as  a (complex)  associative algebra with an involution * (i.e. a conjugate 

linear anti-automorphism). A linear functional   of a *- algebra A  is positive if ( ) 0a a   , for all a A .   

Let  A   be  a  (complex)  (*-) algebra, and   be a  linear (positive) functional of A . We  interpret ( , )A   as 

a quantum  (*-) probability space, and the elements of A  as quantum random variables in view of [26, 27, 

22]. Let I  be an index set and  ℂ ,i i I    be the (*-) algebra (without a unit) freely generated by the 

complex field ℂ  and the non-commuting indeterminates , .i i I   Let ( )i i Ia a   be such a random vector 

with all (self-adjoint) ia A . The non-commutative joint distribution of a  w.r.t.   is aa  : , where 

:a  ℂ ,i i I A     is the unique  (*-) homomorphism s.t.  ( )a i ia   . The scalars 
1

( ... )
ji ia a  are 

viewed as the joint moments of a  w.r.t.  .  

If ( )i
N N i Ia a   and ( )i i Ia a  are random vectors in some quantum  probability spaces ( , )N NA  and 

( , )A  , we say ( )N Na  converges in distribution to a , denoting distr
Na a , if for all 1j  , and all 

1,..., ji i I ,  1

1
lim ( ... ) ( ... )j

j

ii
N N N i i

N
a a a a 


 . When a A  and ( ) 0a  , say a  is centered w.r.t.  , or 

centered, for short.   
If I is totally ordered and 1{ ,..., }ni i = 1{ ,..., }rk k with 1 ... rk k  , the ordered (coloured) partition 

corresponding to jj i  is 1( ,..., )rP P ( )OP n  given by { ; }j s jP s i k  [15]. When  iA A , Ii  are 

subalgebras, and 1 nw a a A    is a random variable, s.t. all 
jj ia A , for 1,..., ni i I , the ordered 

(coloured) partition associated to w is that corresponding  to jj i .   

If 1 2i i  or 1n ni i  , we say jj i has 1i , respectively, ni  as marginal peaks , and 1a , respectively, 

na  is marginal peak in w ; when there exists  2 p n   with 1 1p p pi i i    ( respectively, 1 1p p pi i i   ), 

we say jj i has pi  as internal peak (respectively, bottom), and pa  is an internal peak (respectively, a 

bottom) in w .When jj i has internal peaks, we say pa  , respectively, qa  is the left, respectively, right 

internal peak in w ,  if :p min 1 1{2 1; }s s ss n i i i      and :q max 1 1{2 1; }s s ss n i i i      .  

We say 1 nw a a A   , with 
kk ia A , as before, is a simple random variable in ( , )A  , if w  is 

reduced (i.e., niii  ...21 ) , calling n  the length of w , and w  has a centered (marginal or internal) peak.  

Let ( , )A   be a quantum probability space as before, I  be a totally ordered set, and iA A , Ii  be a 

family of  subalgebras of A . 
We say the family IiiA )( has the factorization property by marginal peaks in ( , )A  , if, for all 2n , 

all 1 ... ni i  , and all 
kk ia A , it holds: i) 1 1 2( ) ( ) ( )n na a a a a     , when 1 2i i ; and ii) 

1 1 1( ) ( ) ( )n n na a a a a       , when 1n ni i  . 

We say the family IiiA )( has the factorization property by internal peaks in ( , )A  , if, for all 

1 ... ni i  , and all 
kk ia A , it holds:  1( )na a   ( )pa 1 1 1( )p p na a a a    , whenever 2 p n   

and 1 1p p pi i i   . 

The next definition concerning the notion of monotone independence comes from [2,6,10,12,20, 21, 
24]. The dual concept of anti-monotone independence is defined by reversing the order on I . 
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Definition 2.1 Let ( , )A   be a quantum probability space as above, and iA A , Ii  be  

subalgebras. The family IiiA )(  is monotone independent (or monotone, for short) in ( , )A  , if  it has the 

factorization property by (marginal, and internal) peaks. If iA S , Ii  are subsets, then ( )i i IS  is 

monotone independent in ( , )A  , if IiiA )( is monotone independent in ( , )A  , iA  being  the  subalgebra of 

A  generated by iS . 

Remark 2.2  Let 1 nw a a A    be reduced, with all 
jj ia A .  

1) Assume IiiA )( has the factorization property by marginal peaks in ( , )A  . 

 (i) If jj i is strictly monotone on {1,..., }n , then 1( ) ( ) ( )nw a a    ; 

 (ii) If w  has a centered marginal peak, then ( ) 0w  . 

2) If IiiA )( is monotone independent and w  is a simple random variable in ( , )A  , then    

          ( ) 0w  . 

3. JOINT  MOMENTS  OF  MONOTONE  QUANTUM  RANDOM  VARIABLES    

Let in this section ( , )A   be a quantum probability space as before, and iA A , Ii  be subalgebras 

of A  s.t. the family ( )i i IA  is monotone independent in ( , )A  . 

We observe ( )i i IA  is weakly independent in ( , )A  , in the sense of [4,11]; remind the weak-

independence has the sense below. 
Definition 3.1 Let ( , )B   be a quantum probability space and iB B , Ii  be  subalgebras. The 

family ( )i i IB   is weakly independent in ( , )B  , if 1( ... )nx x  1 1( ... ) ( ... )p p nx x x x   , for all n > 1p  , 

all ji I , all 
jj ix B , s.t. the sets },...,{ 1 pii  and },...,{ 1 np ii  are disjoint. If iB S , Ii  are subsets, then 

( )i i IS  is weakly independent, if ( )i i IB  is weakly independent; iB  being  the  subalgebra of B  generated by 

iS . 

Lemma 3.2 ( )i i IA  is weakly independent in ( , )A  ; i.e., 

1( )na a   1 1( ) ( )p p na a a a        , for all n > 1p  , all ji I , all 
jj ia A , s.t. the sets 

},...,{ 1 pii  and },...,{ 1 np ii  are disjoint. 

Proof. It suffices to assume niii  ...21 . The factorization property by marginal peaks implies the 

assertion for 2n  . For 3n , the assertion follows via  Remark 2.2 and the 2n   case.  
Let 3n  . Suppose the statement true for any nr  . We may conclude by induction due to the 

inferences below. 
If 1 2i i , we get 1( )na a   1 1( ) ( )p p na a a a         through the factorization property by 

marginal peaks (only), for 1p  , and in addition the induction hypothesis, for 2p  . 

When 1 2i i  and jj i  has no internal peaks, then this map is strictly increasing on {1,..., }n ; thus, 

1( )na a   1 1( ) ( )p p na a a a         by  Remark 2.2. 

Otherwise, consider an internal peak ka in 1 na a   . If 1p k   or 1p k  , the assertion results  by 

the inductive hypothesis and the factorization property by ka . If { 1, }p k k  , the  factorization property 

by ka  again entails  

1( )na a   1 1 1( ) ( )k k k na a a a a      1 1 1( ... ) ( ) ( ... )k k k na a a a a     1 1( ) ( )p p na a a a        ,via 

the induction hypothesis and the factorization property by marginal peaks.     
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For 1 nw a a A    s.t. every 
jij Aa  , we say w  has ka  as singleton when k ji i , for any j k .                    

For  the next statement see, e.g., [10, Prop. 8.14] and [15, Lemma 6.1]. 
Lemma 3.3 Let 1 nw a a A   , s.t. every 

jij Aa  , and w has a centered singleton ka . Then 

( ) 0w  . 
Proof. We sketch the proof only for the reader’s convenience. It suffices to assume w  is reduced. If 

 1,k n , apply Lemma 3.2  and the centeredness of ka . It rests to consider 12  nk . For 3n , the 

statement results via Lemma 3.2, Remark 2.2  and the centeredness of ka .         

Let 3n  . Suppose the statement true for any 1 ra a A     of length nr  ; check it for 

1 nw a a A   , as follows. If 1n ni i  , the factorization property by na  implies 

1 1( ) ( ) ( )n nw a a a    =0, because 1 1( ) 0na a      by the induction hypothesis or Lemma 3.2 and the 

centeredness of ka . If 1n ni i  , and jj i  has no internal peaks, then this map is strictly decreasing on 

{1,..., }n ; so, 1( )k na a a    1( ) ( ) ( ) 0k na a a      by the Remark 2.2  and the centeredness of 

ka . Alternatively, when the singleton ka  is even a peak in w , then w  is a simple random variable in 

( , )A  , and ( ) 0w  , due to Remark 2.2. Otherwise, consider an internal peak pa  in w . Then 

1 1 1( )p p na a a a    0, by the inductive hypothesis. Thus, ( ) 0w   via the factorization property 

by pa . 

Lemma 3.4 Let 1 nw a a A   , s.t. all 
jij Aa  are centered, and the ordered partition   

associated to w  is a crossing  pairing. Then ( ) 0w  . 

Proof. In view of Lemma 3.2, and Remark 2.2, it remains to consider:   is irreducible, 1 2i i , 

1n ni i  ,  all internal peaks in the reduced form of w  arise from some  interval blocks of   ; and, under its 

reduced form, any subword obtained from w  by excluding such an internal peak has no other internal peaks 
arising from interval blocks of   which does not occur in w . 

Let 0 1, , ..., rc c c be all these internal peaks in the reduced form of w ; let kI  be the interval block of 

  corresponding to kc . The factorization property by every kc  successively implies (with 1 , ..., rw w  

under the reduced form): 

0 1( ) ( ) ( )w c w   = 0 1 2( ) ( ) ( )c c w   =...= 0 1( ) ( ) ( )r rc c w     = 0 0( ) ( ) ( )rc c w     ; where  

1 , ..., rw w  and 0w  are the obvious subwords of w  corresponding to the ordered subpartitions 1 , ..., r   

and 0  of  , respectively, given by 1 0: \{ }I  , 1 1: \{ }j j jI    , for 2,...,j r , and 0 : \{ }r rI  . 

Thus, 1 , ..., r   and 0  are crossing  pairings; and 0  has no intervals giving internal peaks in 0w . 

Hence 0w  is a simple random variable in ( , )A  ; and  0( ) 0w  by Remark 2.2.  

When ( , )A    is a quantum probability space as before, and 1 2,x x A  are random variables s.t. one of 

them is centered w.r.t.  , then 1 2 2 1 2( ) ( , )x x k x x  ; whenever, e.g., 2k  are the 

tensor/free/Boolean/monotone cumulants (see, e.g., [2, 22]) w.r.t.  , respectively, of order two. In the 

sequel, we may use any of these choices; and we define 1( ,..., )nk x x := 2
( , ) ( )

( , )i j
i j B

k x x





, for 2 ( )M n   

and kx A . 

We illustrate the last lemma by the following partitions in 2 ( )ONC n  associated to 1 nw a a A   .  
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Examples 3.5 1) If 4n  , let 1 1 2((2,3) , (1, 4) )   and 2 1 2((1, 4) , (2,3) )  , which are non-

monotone and, respectively,  monotone. Their interval gives 
22 3 2: ia a c A  . Thus, 1 2 4w a c a  as reduced 

word. For 1 , we get 1 2 4( ) ( ) ( )w a c a   =0, because 4a  is a marginal peak in w , and this is a simple 

random variable.  For 2 , remark 2c  is an internal peak in w ; so,  

2 1 4( ) ( ) ( )w c a a   2 2 3 2 1 4( , ) ( , )k a a k a a  =
2 1 4( ,..., )k a a  via the factorization property by 2c . 

2) For 6n  , let   be any of the monotone pairings  

1 2 3((1,6) ,(2,3) ,(4,5) ) , 1 2 3((1,6) ,(4,5) ,(2,3) ) , and 1 2 3((1,6) ,(2,5) ,(3,4) ) . For each of them, the interval 

block 3( , )   gives the unique internal peak c in the reduced form of w ; thus, ( ) ( ) ( )w c w    , via the 

factorization property by c , where w  is the subword obtained from w  by excluding c . The computation of 

( )w  reduces to the above example for 4n  , implying ( )w  1 6( ,..., )k a a  in each case. 

3) For 8n  , let   be any of the following monotone partitions: 1 2{(1,8) , (2,5) , (3,4) , (6,7) }s t , 

1 2{(1,8) , (4,7) , (2,3) ,(5,6) }s t , 1 2 2{(1,8) , (2,7) , (3,4) , (5,6) } (8)s t NC , with 3 , 4s t  ; and  

1 2 3 4((1,8) , (6,7) (2,5) , (3,4) ) , 1 2 3 4 2((1,8) , (2,3) , (4,7) , (5,6) ) (8)ONC . For each of them, the interval block 4( , )   

gives the left or right internal peak c in the reduced form of w ; so, ( ) ( ) ( )w c w    , via the factorization 

property by c  again; where w  is the subword obtained from w  by excluding c . The computation of 

( )w  reduces to the examples before for 6n  . Thus, one finally gets  ( )w  1 8( ,..., )k a a  always.              

Lemma 3.6 Let 1 nw a a A   , s.t. all 
jij Aa  are centered, and the ordered  partition   

associated to w  is a non-crossing pairing. Then ( )w  0, if   is not monotone; but ( )w  1( ,..., )nk a a , 

if   is  monotone. 
Proof. Due to Lemma 3.2, we may consider (1, )n   . If, under its reduced form, w  has  marginal 

peaks,  or 1 2i i , 1n ni i  ,  and w  has  an internal peak pa  that does not arise from an interval block of  , 

then w  is a simple random variable in ( , )A  ; and observe:   has a pair of blocks ( , ) ( 1, )k k    , with 

{1, }k p , or ( , ) ( 1, )l l    , with { , }l p n , for which the colouring does not reflect the order. Thus,   

is not monotone then, and ( )w  0, by Remark 2.2.  

Therefore, the assertion being trivial for 2n  , it remains to consider that (1, )n   , 1 2i i , 

1n ni i  , and w  has (under its reduced form) only internal peaks arising from some interval blocks of  . 

Note that, for any pair of blocks k lP P  in   involving such an interval block giving the left (right) internal 

peak in w , the colouring is order-reflecting: k l  . 
For 4n , 6 ,  see  Examples 3.5. For 8n  , there are only the following pairings, besides of the 

partitions in Examples 3.5: 1 2 2{(4,5) , (1,8) , (2,3) , (6,7) } (8)s t NC , with 3 , 4s t   (non-monotone); 

1 2{(1,8) , (2,3) , (4,5) , (6,7) } (8)p q r NC , with 2 , , 4p q r  , and 1 2 3 4 2((1,8) , (2,7) ,(3,6) , (4,5) ) (8)ONC  

(monotone). For each of these pairings, the interval block 4( , )   gives the left or right internal peak c  in the 

reduced form of w . Then  the subword w  obtained from w  by excluding c  has a marginal peak in both of 
these non-monotone cases (when w  is a simple random variable and ( ) 0w    ). And for the monotone 

cases, the computation of ( )w  reduces again to the three cases for 6n   from  Examples 3.5; thus, one 

finally gets  ( )w  1 8( ,..., )k a a  always. 

Let 8n  . Suppose the assertion true for all np . To conclude by induction, remark the next facts. 
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Let 
rirrr Acaa  :1  be, for instance, the right internal peak in (the reduced form of ) w , arising (as a 

singleton) in w  from an interval ( , 1)r r   , with 1 1 2r r r ri i i i     . Therefore we may express  

1 r nw a xc ya ; where ,x y  are void or arbitrary  products of 
jij Aa   with ( ) 0ja  ; but, y  (as non-void 

factor in w ) has no internal peaks. After reducing x  and y , the factorization property by rc  implies  again 

( )w  1( ) ( )r nc a xya  . The ordered subpartition of   associated to 1 na xya  belongs now to 

2 ( 2)ONC n  . 

If   is not monotone, this ordered subpairing of   is not monotone; hence ( )w  0, by the inductive  
hypothesis. If   is monotone, this ordered subpairing of   is monotone, too. We may proceed as in [13, 
Lemma 3.8]. Let 2 ({2,..., 1} \{ , 1})M n r r    be the ordered sub-partition of   associated to xy. 

Since{(1, ) }n   =: 2 ({1,..., } \{ , 1})M n r r    is the ordered sub-partition of   associated to 1 na xya , 

the induction hypothesis implies  

         1( )na xya  1 2 1 2 1( , ,..., , ,..., , )r r n nk a a a a a a     = 2 1 2 1 2 1( , ) ( ,..., , ,..., )n r r nk a a k a a a a
    . 

         Thus, ( )w  2 1 2 1 2 1 2 1( , ) ( , ) ( ,..., , ,..., )r r n r r nk a a k a a k a a a a 
    = 1( ,..., )nk a a ; because  

  ={(1, ) }n   , with :  {( , 1) }r r   2 ({2,..., 1})M n  .      

 

4. MONOTONE GAUSSIAN FAMILY AND MULTIVARIATE CLT  

Let I  be an arbitrary index set. We recall a scalar matrix ,{ }ij i j Iq q  is positive if and only if 

,
, 1

0
k l

n

i i k l
k l

q  


 , for all n , all 1,..., ni i I ,  and all 1,..., n  ℂ.  

The following definition is inspired from [2, 3, 8, 13 , 22 ]. 
Definition 4.1 Let ,{ }ij i j Iq q   be a (positive) scalar matrix. Let ( , )A   be a quantum (*-) probability 

space. A family of (selfadjoint) random variables ( )i i Ig g   in this is called a centered monotone Gaussian 

family of covariance q, if its distribution is of the following  form, for all j  ℕ and all 1,..., ji i I :  

1
( ... )

ji ig g =
 

1

2

1
!

( ,..., )
ji i

M j

k g g

 ; where  

1
( ,..., )

ji ik g g :=
( , ) ( )

k li i
k l B

q





.  

Theorem 4.2 Let ( , )A   be a quantum (*-)probability space, and { , }i
rX i I A  , r  ℕ be a 

sequence of  monotone independent sets of (selfadjoint) random variables in this, s.t. rX = ( )i
r i IX   has the 

same joint distribution for all r  ℕ , and all variables are centered, both  w.r.t.  . Consider, for every 

1N  , the sums 1

1

:
N

i i
N rN

r

S X


  A , and : ( )i
N N i IS S   as random vector in ( , )A  . Denote the 

covariance of the variables w.r.t.   by ,{ }ij i j Iq q   ; i.e., :ijq  ( )i j
r rX X . Then distr

NS g ;  where 

( )i i Ig g   is a centered monotone Gaussian family of (positive) covariance q .  

Proof. Since all rX  have the same joint distribution w.r.t.  , and form monotone independent sets,  

the joint moments of ( )r r NX   are invariant under order-preserving injective maps, and thus, for all fixed 
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jℕ and all 1,..., ji i I , the moment 1

1
( ... )j

j

ii
r rX X  depends only on the ordered partition ( )OP j   

corresponding to 1( ,..., )jr r  ℕ j . We may denote 1

1
( ... )j

j

ii
r rX X =: 1( ; ,..., )ji i  .  

Thus,  

                 1( ... )jii
N NS S =  1

1

1

1

,..., 1

( ) ( ... )j

j

j

N
iij

r rN
r r

X X


 =
 

1
1( ) ( ; ,..., )j

N jN
OP j

C i i



 

 ,  

as in [13,15]; where   denotes as before the number of blocks in  ; and the number of representatives of 

the equivalence class corresponding to the involved partition : ! !( )!NC N N     grows asymptotically 

like N  for large N . By Lemma 3.3, every partition with singletons has null contribution in the sum above. 

But the partitions without singletons have 2
j   blocks, and the limit of the factor 1( ) j

NN
C  is 0, if 2

j  ; 

and is 1
! , if 2

j  . So 1lim ( ... )jii
N N

N
S S

  2

1
1!

( ; ,..., )j
OP j

i i


 


  , because   is a pairing, if ( )OP j   

has no singletons and its number of blocks is equal to 2
j
. Thus, the odd moments vanish, since 2 ( )OP j   

is empty, when j is odd. 
We  conclude, by Lemmata 3.4 and 3.6, because the crossing ordered pairings or the non-monotone 

non-crossing ordered pairings have null contribution in the previous sum, and, respectively,  the  monotone 
pairings have the claimed contribution. 

Remarks 4.3 1) As in the classical, commutative (:tensor) [10, 22], univariate monotone [10, 24] or  
(c-)free cases [13,22] (see also [5,27], for short proofs), the assumption of being identically distributed for 
the involved random vectors may be replaced by the pair (i)&(ii) below, with essentially the same proof as 
above, but we do not detail this here: 

i) 1sup ( ... )jii
r r rX X    (for all j, and all 1,..., ji i I ); 

ii)  there exist 1

1

lim ( )
N

i j
ij r rNN

r

q X X




  . 

2) By reversing the order on I , we get the statements corresponding to the multivariate CLT for the 
anti-monotone random variables (in terms of bottoms instead of peaks) via the anti-monotone partitions. 

3) The combinatorial description of the joint moments of a Gaussian family (: multivariate normal 
distribution) involving all pairings instead of all non-crossing pairings (as a semicircular family [22 ] in the 
free probability theory) is often named the Isserlis formula [14] in the classical mathematical statistics or 
probability theory, and usually the Wick formula in the quantum field theory (see, e.g., [23]). By analogy 
(see also [3,13]), it seems adequate to name an arcsine family such a(n) (anti-)monotone Gaussian family, 
and the formula describing its joint moments (see also, [8])  may be interpreted as a(n) (anti-)monotone 
Isserlis-Wick formula.  
        In the same way, we can obtain operator-valued versions of these facts or other generalizations, 
including the case of the c-monotone or the indented independence, but we do detail this elsewere. 
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