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1 Chapter 1: Nonlinear eigenvalue problems
1.1 On the spectrum of a nontypical eigenvalue problem in R2

1.2 The set of eigenvalues of a problem involving Neumann
boundary condition

1.3 Eigenvalue problems on general domains
1.4 Perturbed fractional eigenvalue problems
1.5 The spectrum of an inhomogeneous Baouendi-Grushin type

operator



1.2. The set of eigenvalues of a problem involving

Neumann boundary condition

Assume ⌦ ⇢ RN (N � 2) is a bounded domain with smooth
boundary @⌦.

We consider the eigenvalue problem

8
<

:

��pu��u = �u in ⌦,
⇣
|ru|p�2

N + 1

⌘
@u

@⌫
= 0 on @⌦,

(1)

when p 2 (1,1) \ {2} is a real number, �pu := div(|ru|p�2
N ru)

stands for the p-Laplace operator and ⌫ denotes the outward unit
normal to @⌦.



Background

We consider the problem
( �� u = �u in ⌦,

@u

@⌫
= 0 on @⌦,

(2)

where ⌫ denotes the outward unit normal to @⌦.
Problem (2) possesses an unbounded sequence of eigenvalues,
more precisely

0 = �
N
0 < �

N
1 < �

N
2  · · ·  �

N
n  · · · .

Consequently, in this case the set of eigenvalues of problem (2) is
discrete.
The first positive eigenvalue of problem (2) is

�
N
1 := inf

u2W 1,2(⌦)\{0},
R
⌦ u dx=0

Z

⌦
|ru|2N dx

Z

⌦
u
2
dx

. (3)



Continuous spectrum

We consider the problem

( ��p u = �u in ⌦,

|ru|p�2
N

@u

@⌫
= 0 on @⌦,

(4)

with either p 2
⇣⇣

2N
N+2 ,1

⌘
\ {2}

⌘
\ (1, N) or p > N .

Definition

� 2 R is an eigenvalue of problem (4), if 9 u 2 W
1,p

(⌦) \ {0} s.t.

Z

⌦
|ru|p�2

N rur' dx = �

Z

⌦
u' dx, 8 ' 2 W

1,p
(⌦) . (5)

Theorem

The set of eigenvalues of problem (4) is the interval [0,1).



Main problem

We consider the problem
8
><

>:

��pu��u = �u in ⌦,

⇣
|ru|p�2

N + 1

⌘
@u

@⌫
= 0 on @⌦,

(6)

where p 2 (1,1)\{2} is a real number.

Definition 1.1

The parameter � 2 R is an eigenvalue of problem (6) if there exists
u 2 W

1,max{2,p}
(⌦) \ {0} such that

Z

⌦
|ru|p�2

N rur' dx+

Z

⌦
rur' dx� �

Z

⌦
u' dx = 0, (7)

for all ' 2 W
1,max{2,p}

(⌦).



Background

Theorem (M. Mihăilescu, CPAA, 2011)

If p 2 (2,1), the set of eigenvalues of problem (6) is given by

{0} [ (�1(p),1),

where

�1(p) := inf

u2W 1,p(⌦)\{0},

Z

⌦
u dx = 0

Z

⌦
|ru|2N dx

Z

⌦
u
2
dx

> 0. (8)

M. Mihăilescu (2011),
An eigenvalue problem possessing a continuous family of
eigenvalues plus an isolated eigenvalue,
Comm. on Pure and Applied Analysis 10, 701–708.



Spectrum consisting in a continuous part plus an isolated

point

The main result on problem (6) in the case p 2 (1, 2) is given by
the following theorem.

Theorem (M. Fărcăşeanu, M. Mihăilescu, D. S-D, NA, 2015)

If p 2 (1, 2), the set of eigenvalues of problem (6) is given by

{0} [ (�
N
1 ,1),

where

�
N
1 := inf

u2W 1,2(⌦)\{0},

Z

⌦
u dx = 0

Z

⌦
|ru|2N dx

Z

⌦
u
2
dx

> 0.



Case p 2 (1, 2)

Definition

� 2 R is an eigenvalue of problem (6) if there exists
u 2 W

1,2
(⌦) \ {0} such that

Z

⌦
|ru|p�2

N rur' dx+

Z

⌦
rur' dx� �

Z

⌦
u' dx = 0, (7)

for all ' 2 W
1,2

(⌦).

In order to go further, we define

V2 := {u 2 W
1,2

(⌦);

Z

⌦
u dx = 0}.

We recall that
W

1,2
(⌦) = V2 � R.



Case p 2 (1, 2)

Definition

� 2 R is an eigenvalue of problem (6) if there exists
u 2 W

1,2
(⌦) \ {0} such that

Z

⌦
|ru|p�2

N rur' dx+

Z

⌦
rur' dx� �

Z

⌦
u' dx = 0, (7)

for all ' 2 W
1,2

(⌦).

In order to go further, we define

V2 := {u 2 W
1,2

(⌦);

Z

⌦
u dx = 0}.

We recall that
W

1,2
(⌦) = V2 � R.



Case p 2 (1, 2)

Lemma 1.2.4.

Every � 2 (�
N
1 ,1) is an eigenvalue of problem (6).

For each � 2 (�
N
1 ,1) we define the functional I� : V2 ! R by

I�(u) :=
1

2

Z

⌦
|ru|2N dx+

1

p

Z

⌦
|ru|pN dx� �

2

Z

⌦
u
2
dx. (9)

It is standard to prove that I� 2 C
1
(V2\{0},R) with the derivative

given by

hI 0�(u),'i =
Z

⌦
rur' dx+

Z

⌦
|ru|p�2

N rur' dx� �

Z

⌦
u' dx,

(10)
8 u 2 V2\{0}, 8 ' 2 V2.

Thus, � is an eigenvalue of problem (6) if and only if I� possesses
a nontrivial critical point.



We define the so-called Nehari manifold by

N� := {u 2 V2\{0} : hI 0�(u), ui = 0}

=

⇢
u 2 V2\{0} :

Z

⌦
|ru|2N dx+

Z

⌦
|ru|pN dx = �

Z

⌦
u
2
dx

�
.

On N� functional I� has the following expression

I�(u) =

✓
1

p
� 1

2

◆Z

⌦
|ru|pN dx.



Set m := inf
u2N�

I�(u) � 0.

We proceed in 5 steps:

Step 1. N� 6= ;.
Step 2. Every minimizing sequence for I� on N� is bounded.
Step 3. m > 0.
Step 4. 9 u 2 N� s.t. I�(u) = m.
Step 5. u found on step 4 is a critical point for I�.



2 Chapter 2: The asymptotic behavior of solutions for some
classes of PDEs
2.1 The limiting bevahior of solutions for a class of problems

involving the p-Laplace operator and an exponential term
2.2 Convergence of the sequence of solutions for a family of

eigenvalue problems
2.3 A limiting problem for a family of eigenvalue problems

involving p-Laplacians
2.4 The asymptotic behavior of solutions to a class of

inhomogeneous problems
2.5 The limiting behavior of solutions to inhomogeneous

eigenvalue problems in Orlicz-Sobolev spaces
2.6 The asymptotic behavior of a class of '-harmonic functions



2.1. A class of problems involving the p-Laplace operator

and an exponential term

Let ⌦ ⇢ RN
(N � 2) is a bounded domain with smooth boundary,

@⌦.

For each p > N, consider the problem

⇢
��pu = �e

u
, in ⌦,

u = 0, on @⌦,
(11)

where �pu := div(|ru|p�2
N ru).

Definition

We say that u 2 W
1,p
0 (⌦) is a weak solution of problem (11),

Z

⌦
|ru|p�2

N rur' dx = �

Z

⌦
e
u
' dx, 8 ' 2 W

1,p
0 (⌦) . (12)



Theorem (Morrey’s inequality)

For each p > N , there exists a positive constant Cp such that

kukL1(⌦)  Cpk|ru|NkLp(⌦), 8 u 2 W
1,p
0 (⌦) , (13)

where

Cp = p|B1(0)|�
1
pN

�N(p+1)

p2 (p� 1)

N(p�1)

p2 (p�N)

N�p2

p2 �1(p)
N�p
p2

and

�1(p) := inf
u2C1

0 (⌦)\{0}

Z

⌦
|ru|pN dx

Z

⌦
|u|p dx

.



Furthermore, it is known that

lim
p!1

Cp = kdist(·, @⌦)kL1(⌦),

where dist(x, @⌦) := inf
y2@⌦

|x� y|N , 8 x 2 ⌦.

F. Charro & E. Parini
Limits as p ! 1 of p-Laplacian problems with a superdi↵usive
power-type nonlinearity: Positive and sign-changing solutions,
J. Math. Anal. Appl. 372 (2010), 629-644.



Background

Theorem

For each p > N , there exists a positive real number �p such that
for each � 2 (0,�p), problem

⇢
��pu = �e

u
, in ⌦,

u = 0, on @⌦,

has a weak solution.

J. A. Aguilar Crespo and I. Peral Alonso,
On an elliptic equation with exponential growth,
Rend. Sem. Mat. Univ. Padova 96 (1996), 143–175.



Main results

Theorem 2.1.1 [M. Mihăilescu, D.S.-D., C. Varga, ESAIM COCV,
2018]

There exists a positive real number �⇤ such that for each
� 2 (0,�

⇤
) and for each p > N , problem (11), namely

⇢
��pu = �e

u
, in ⌦,

u = 0, on @⌦,

has a nonnegative weak solution.

Theorem 2.1.2 [M. Mihăilescu, D.S.-D., C. Varga, ESAIM COCV,
2018]

For each � 2 (0,�
?
), let up be the nonnegative solution of problem

(11), given by Theorem 1.2.1. Then {up} converges uniformly in ⌦
to dist(·, @⌦) as p ! 1.



Background
⇢

��pu = f(x), for x 2 ⌦,
u = 0, for x 2 @⌦,

(14)

where f 2 L
1
(⌦) \ {0} is a positive function.

T. Bhattacharya, E. DiBenedetto, & J. Manfredi, Limits as
p ! 1 of �pup = f and related extremal problems,
Rend. Sem. Mat. Univ. Politec. Torino (1991), 15-68.

B. Kawohl, On a family of torsional creep problems,
J. Reine Angew. Math. 410 (1990), 1-22.

M. Perez-Llanos & J. D. Rossi, The limit as p(x) ! 1 of
solutions to the inhomogeneous Dirichlet problem of
p(x)-Laplacian, Nonlinear Analysis 73 (2010), 2027-2035.

M. Bocea & M. Mihăilescu, On a family of inhomogeneous
torsional creep problems, Proceedings of the American
Mathematical Society 145 (2017), 4397-4409.



Background

A subsequence of the solutions up > 0 of the family of problems

⇢
��pu = �1(p)|u|p�2

u, in ⌦,

u = 0, on @⌦,
(15)

converges uniformly in ⌦ to a nontrivial and nonnegative viscosity
solution of the limiting problem

(
min

n
|ru|N � u

kdist(·,@⌦)kL1 ,��1u

o
= 0 in ⌦,

u = 0 on @⌦.

(16)

P. Juutinen, P. Lindqvist & J. J. Manfredi (1999):
The 1-eigenvalue problem,
Arch. Rational Mech. Anal. 148, 89-105.



Main results

Theorem 2.1.1 [M. Mihăilescu, D.S.-D., C. Varga, ESAIM COCV,
2018]

There exists a positive real number �⇤ such that for each
� 2 (0,�

⇤
) and for each p > N , problem (11), namely

⇢
��pu = �e

u
, in ⌦,

u = 0, on @⌦,

has a nonnegative weak solution.



Existence of solutions

For each � > 0, we introduce the Euler-Lagrange functional
associated to problem (11), i.e. J� : W

1,p
0 (⌦) ! R given by

J�(u) :=
1

p

Z

⌦
|ru|pN dx� �

Z

⌦
e
u
dx, 8 u 2 W

1,p
0 (⌦) .

It is standard to show that J� 2 C
1
(W

1,p
0 (⌦),R) and

hJ 0
�(u),�i =

Z

⌦
|ru|p�2

N rur� dx� �

Z

⌦
e
u
� dx,

for all u, � 2 W
1,p
0 (⌦) .

Remark: Note that the Direct Method in the Calculus of
Variations can not be applied in this case since J� fails to be
coercive.



Lemma 2.1.1

For each � 2 (0,�
?
p), we have

J�(u) �
1

2
, 8 u 2 W

1,p
0 (⌦) with k|ru|NkLp(⌦) = p

1/p
,

where

�
?
p :=

1

2|⌦|eCpp1/p

and

Cp = p|B1(0)|�
1
pN

�N(p+1)

p2 (p� 1)

N(p�1)

p2 (p�N)

N�p2

p2 �1(p)
N�p
p2 .

Since lim
p!1

Cp = kdist(·, @⌦)kL1(⌦) and lim
p!1

p
1/p

= 1 it follows

that

lim
p!1

�
?
p =

1

2|⌦|ekdist(·,@⌦)kL1(⌦)
> 0 .



Lemma 2.1.1

For each � 2 (0,�
?
p), we have

J�(u) �
1

2
, 8 u 2 W

1,p
0 (⌦) with k|ru|NkLp(⌦) = p

1/p
,

where

�
?
p :=

1

2|⌦|eCpp1/p

and

Cp = p|B1(0)|�
1
pN

�N(p+1)

p2 (p� 1)

N(p�1)

p2 (p�N)

N�p2

p2 �1(p)
N�p
p2 .

Since lim
p!1

Cp = kdist(·, @⌦)kL1(⌦) and lim
p!1

p
1/p

= 1 it follows

that

lim
p!1

�
?
p =

1

2|⌦|ekdist(·,@⌦)kL1(⌦)
> 0 .



Lemma 2.1.1

For each � 2 (0,�
?
p), we have

J�(u) �
1

2
, 8 u 2 W

1,p
0 (⌦) with k|ru|NkLp(⌦) = p

1/p
,

where

�
?
p :=

1

2|⌦|eCpp1/p

and

Cp = p|B1(0)|�
1
pN

�N(p+1)

p2 (p� 1)

N(p�1)

p2 (p�N)

N�p2

p2 �1(p)
N�p
p2 .

Since lim
p!1

Cp = kdist(·, @⌦)kL1(⌦) and lim
p!1

p
1/p

= 1 it follows

that

lim
p!1

�
?
p =

1

2|⌦|ekdist(·,@⌦)kL1(⌦)
> 0 .



Consequently, defining

�
?
:= inf

p>N
�
?
p , (17)

and taking into account that function

(1,1) 3 p �! �1(p) := inf
u2C1

0 (⌦)\{0}

Z

⌦
|ru|pN dx

Z

⌦
|u|p dx

is continuous we deduce that

�
?
p � �

?
> 0, 8 p > N .



Variational solution

Theorem 2.1.3

For each � 2 (0,�
?
) and each p > N , problem (11) has a

nonnegative solution up 2 B := Bp1/p(0) which is characterized by

J�(up) = inf
B

J�.

The proof of this theorem relies on Ekeland’s Variational Principle.



Uniform convergence

Lemma 2.1.2

Fix � 2 (0,�
?
) and let up be the nonnegative solution of problem

(11) given by Theorem 2.1.1. Then there is a subsequence {up}
which converges uniformly in ⌦, as p ! 1, to some function
u1 2 C(⌦) with u1 � 0 in ⌦.

Proof: Fix q > N . For each p > q we have
Z

⌦
|rup|qN dx 

✓Z

⌦
|rup|pN dx

◆q/p

|⌦|1�q/p  p
q/p|⌦|1�q/p

 (e
1/e

)
q|⌦|1�q/p  (e

1/e
)
q
(1 + |⌦|) .

Thus, {|rup|N}p is uniformly bounded in L
q
(⌦).

It follows that there exists a subsequence (not relabeled) of {up}
and a function u1 2 C(⌦) such that up * u1 weakly in W

1,q
0 (⌦)

with q > N and up ! u1 uniformly in ⌦.
Moreover, up � 0 in ⌦, 8 p > N =) u1 � 0 in ⌦.



We assume for a moment that the solutions up of (11) are
su�ciently smooth so that we can perform the di↵erentiation in
the PDE

��pup := �div(|rup|p�2
N rup) = �e

up in ⌦,

we get

� |rup|p�2
N �up � (p� 2)|rup|p�4

N �1up = �e
up in ⌦, (18)

where �u := Trace(D
2
u) =

NP
i=1

@2u
@x2

i
and

�1u := hD2
uru,rui =

NP
i,j=1

@u
@xi

@u
@xj

@2u
@xi@xj

.

Note that (18) can be rewritten as

Hp(up,rup, D
2
up) = 0 in ⌦,

Hp(y, z, S) := �|z|p�2
N Trace S � (p� 2)|zN |p�4hSz, zi � �e

y
,

where y 2 R, z 2 RN and S is a real symmetric matrix in MN⇥N
.



Definition of viscosity solution

We give the definition of viscosity solutions for problem
⇢

Hp(u,ru,D
2
u) = 0 in ⌦,

u = 0 on @⌦.
(19)

Definition (M. G. Crandal, H. Ishii, P. L. Lions, BAMS, 1992)

An upper semicontinuous function u : ⌦! R is called a viscosity

subsolution of (19) if u|@⌦  0 and, whenever x0 2 ⌦ and
 2 C

2
(⌦) are such that u(x0) =  (x0) and u(x) <  (x) if

x 2 B(x0, r) \ {x0} for some r > 0, then
Hp( (x0),r (x0), D2

 (x0))  0.

A lower semicontinuous function u : ⌦! R is called a viscosity

supersolution of (19) if u|@⌦ � 0 and, whenever x0 2 ⌦ and
 2 C

2
(⌦) are such that u(x0) =  (x0) and u(x) >  (x) if

x 2 B(x0, r) \ {x0} for some r > 0, then
Hp( (x0),r (x0), D2

 (x0)) � 0.



Lemma 2.1.3

A continuous weak solution of (11) is also a viscosity solution of
(11).

Next, we compute the limit of

Hp(up,rup, D
2
up) = 0 in ⌦

as p ! 1. More exactly, we consider the sequence of viscosity
solutions {up} and we would like to find out what equation is
satisfied by any cluster point of this sequence, which is u1.



Limit function

Theorem 2.1.3

Let u1 be the function obtained as a uniform limit of a
subsequence of {up} in Lemma 2.1.2. Then u1 is a viscosity
solution of problem

⇢
min{|ru|N � 1,��1u} = 0, in ⌦,

u = 0, on @⌦.
(20)

It is well-known that equation (20) has as unique solution
dist(·, @⌦), namely the distance function to the boundary of ⌦.
The entire sequence up converges uniformly to dist(·, @⌦) in ⌦, as
p ! 1.

R. Jensen,
Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm
of the Gradient,
Arch. Rational Mech. Anal. 123 (1993), 51-74.



3 Chapter 3: Torsional Creep Type Problems
3.1 Anisotropic Torsional Creep Problem
3.2 Torsional creep problems involving Grushin-type operators
3.3 Torsional creep problems in Finsler metrics



3.1. Anisotropic Torsional Creep Problem

“Torsional creep”

the permanent plastic deformation of a material subject to a
torsional moment for an extended period of time and at su�ciently
high temperature.



Let ⌦ ⇢ RN (N � 2) be an open, bounded domain with smooth
boundary, @⌦.

For each real number p > 1, torsional creep problems are modelled
by the family of equations

⇢
��pu = 1 in ⌦,

u = 0 on @⌦,
(21)

which possess unique solutions denoted by up 2 W
1,p
0 (⌦) (actually,

up 2 C
1,↵

(⌦)).

L. M. Kachanov: The theory of creep,
Nat. Lending Lib. for Science and Technology, Boston Spa,
Yorkshire, England, 1967.

L. M. Kachanov: Foundations of the theory of plasticity,
North-Holland Publishing Co., Amsterdam-London; American
Elsevier Publishing Co., New York, 1971.



Let ⌦ ⇢ RN (N � 2) be an open, bounded domain with smooth
boundary, @⌦.

For each real number p > 1, torsional creep problems are modelled
by the family of equations

⇢
��pu = 1 in ⌦,

u = 0 on @⌦,
(21)

which possess unique solutions denoted by up 2 W
1,p
0 (⌦) (actually,

up 2 C
1,↵

(⌦)).

L. M. Kachanov: The theory of creep,
Nat. Lending Lib. for Science and Technology, Boston Spa,
Yorkshire, England, 1967.

L. M. Kachanov: Foundations of the theory of plasticity,
North-Holland Publishing Co., Amsterdam-London; American
Elsevier Publishing Co., New York, 1971.



The limit problem of the above family of equations, as p ! 1, is
given by

⇢
min{|ru|N � 1,��1u} = 0 in ⌦,

u = 0 on @⌦,
(22)

and it possesses as unique solution the distance function to the
boundary of ⌦, i.e.

dist(x, @⌦) := inf
y2@⌦

|x� y|N , 8 x 2 ⌦ .

Problem (22) models the perfect plastic torsion.



• Payne & Philippin (1977) showed that

lim
p!1

Z

⌦
up(x)dx =

Z

⌦
dist(x, @⌦)dx.

L. E. Payne & G. A. Philippin (1977):
Some applications of the maximum principle in the problem of
torsional creep,
SIAM J. Appl. Math. 33, 446–455.



• Bhattacharya, DiBenedetto & Manfredi (1991) and Kawohl
(1990) established the uniform convergence of up to dist(·, @⌦) in
⌦.

T. Bhattacharya, E. DiBenedetto, & J. Manfredi (1991):
Limits as p ! 1 of �pup = f and related extremal problems,
Rend. Sem. Mat. Univ. Politec. Torino, special issue, 15–68.

B. Kawohl (1990):
On a family of torsional creep problems,
J. Reine Angew. Math. 410, 1–22.



Similar Results on the Topic

• Perez-Llanos & Rossi (2010) investigated the family of equations

(
�div(|ru|pn(x)�2

N ru) = 1 in ⌦,
u = 0 on @⌦,

(23)

when pn(·) is a sequence of continuous functions over ⌦ which
diverges uniformly to infinity in ⌦, as n ! 1.

M. Pérez-Llanos & J. D. Rossi (2010):
The limit as p(x) ! 1 of solutions to the inhomogeneous
Dirichlet problem of p(x)-Laplacian,
Nonlinear Analysis T.M.A. 73, 2027–2035.



Bocea & Mihăilescu (2017) studied the family of problems
(

�div

⇣
'n(|ru|N )
'n(1)|ru|N ru

⌘
= 1 in ⌦,

u = 0 on @⌦,

(24)

where 'n 2 C
1
(R,R) are odd, increasing homeomorphisms s. t.

1 < '
�
n  t'n(t)

�n(t)
 '

+
n < 1, 8 t � 0 (25)

for some constants '�
n and '+

n with 1 < '
�
n  '

+
n < 1,

'
�
n ! 1 as n ! 1, (26)

9 � > 1 such that '
+
n  �'

�
n for all n > 1, (27)

where �n(t) :=
R t
0 'n(s)ds.

M. Bocea & M. Mihăilescu (2017):
On a family of inhomogeneous torsional creep problems,
Proc. Amer. Math. Soc. 145, 4397-4409.



Examples

Examples of functions 'n : R ! R which are odd increasing
homeomorphisms from R onto R, and for which (25)-(27) hold.
For more details, the reader is referred to [Clément et al.,
Examples 1-3, page 243].

1 'n(t) = |t|n�2
t, n > 1. We have '�

n = '
+
n = n;

2 'n(t) = log(1 + |t|m)|t|n�2
t, n,m > 1. Thus, '�

n = n,
'
+
n = n+m;

3 'n(t) =
|t|n�2t

log(1+|t|) if t 6= 0, 'n(0) = 0, n > 2. In this case it

turns out that '�
n = n� 1, '

+
n = n.

Ph. Clément, B. de Pagter, G. Sweers & F. de Thélin (2004):
Existence of solutions to a semilinear elliptic system through
Orlicz-Sobolev spaces,
Mediterr. J. Math. 1, 241–267.



• Fărcăşeanu & Mihăilescu (2019) studied the family of problems
(24) with

'n(t) := pn|t|pn�2
te

|t|pn

when pn ! 1.

We have

'
�
n := inf

t>0

t'n(t)

�n(t)
= pn and '

+
n := sup

t>0

t'n(t)

�n(t)
= 1.

M. Fărcăşeanu & M. Mihăilescu (2019):
On a family of torsional creep problems involving rapidly
growing operators in divergence form,
Proceedings of the Royal Society of Edinburgh Section A:
Mathematics 149, 495-510.



Framework

Let L, M and N be three positive integers s.t. L+M = N .

• 8 ⇠ 2 RN we write ⇠ = (x, y) 2 RL ⇥ RM with

x = (x1, ..., xL) 2 RL and y = (y1, ..., yM ) 2 RM .

Denote by | · |L, | · |M and | · |N , the Euclidean norms in RL
, RM

and RN , respectively.

For ⇠1 = (x, y) 2 RN and ⇠2 = (x̃, ỹ) 2 RN with x, x̃ 2 RL and
y, ỹ 2 RM we define the “anisotropic Euclidean distance” on RN

as
dN (⇠1, ⇠2) := |x� x̃|L + |y � ỹ|M . (28)

For u : ⌦! R smooth enough we will use the following notations

rxu :=

✓
@u

@x1
, ...,

@u

@xL

◆
,ryu :=

✓
@u

@y1
, ...,

@u

@yM

◆
,ru := (rxu,ryu).
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Our Problem

For each positive integer n let pn and qn be two sequences
satisfying 2  pn  qn < 1. Define the functions

'n(t) := pn|t|pn�2
te

|t|pn
and  n(t) := qn|t|qn�2

te
|t|qn

.

Next, for a given continuous function f : ⌦! (0,1) consider the
family of anisotropic problems
(

�divx
⇣
'n(|rxu|L)
'n(1)|rxu|Lrxu

⌘
� divy

⇣
 n(|ryu|M )
 n(1)|ryu|M ryu

⌘
= f, ⌦,

u = 0, @⌦.

(29)

Our goal is to study the asymptotic behaviour of the solutions for
the family of problems (29) as n ! 1 (provided that
lim
n!1

pn = 1).

Problem (29), due to its anisotropic nature, could represent a
torsion that twists the material depending on the direction of the
variables.
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Main results

Theorem 3.1.1 [D. S.-D., NA-RWA, 2020]

For each integer n � 1, problem (29) has a unique (variational)
solution which is nonnegative in ⌦, say vn.

Theorem 3.1.2 [D. S.-D., NA-RWA, 2020]

If

lim
n!1

pn = 1 and lim sup
n!1

ln(qn)

pn
< 1,

the sequence {vn} converges uniformly in ⌦ to dista(·, @⌦),
where dista(·, @⌦) : ⌦! [0,1) is defined by

dista(⇠, @⌦) := inf
⌘2@⌦

[|x⇠ � x⌘|L + |y⇠ � y⌘|M ], 8 ⇠ 2 ⌦.



Orlicz-Sobolev space

We define the anisotropic Orlicz-Sobolev space

W
1,�n, n(⌦) :=

�
u 2 L

 n(⌦) : |rxu|L 2 L
�n(⌦), |ryu|M 2 L

 n(⌦)
 

endowed with the norm k · k1,�n, n , where L
�n(⌦) and L

 n(⌦)

are Orlicz spaces coresponding to �n, n : R ! R,

�n(t) :=

Z t

0
'n(s) ds = e

|t|pn � 1

and

 n(t) :=

Z t

0
 n(s) ds = e

|t|qn � 1.

•
�
W

1,�n, n(⌦), k · k1,�n, n

�
is a Banach space which is not

reflexive, but is the dual of a separable Banach space.
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We introduce

Wn := W
1,�n, n(⌦) \

⇣
\s>1W

1,s
0 (⌦)

⌘
.

• Wn is a linear closed subspace of W 1,�n, n(⌦).

• if {un} is a bounded sequence in W
1,�n, n(⌦), then it contains

a subsequence which converges in the sense of the weak? topology
to some u 2 Wn.

The Euler-Lagrange functional associated to the problem (29) is
Jn : Wn ! R defined by

Jn(v) :=
1

'n(1)

Z

⌦
�n(|rxv(⇠)|L) d⇠ +

1

 n(1)

Z

⌦
 n(|ryv(⇠)|M ) d⇠

�
Z

⌦
f(⇠)v(⇠) d⇠.
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The Euler-Lagrange functional associated to the problem (29) is
Jn : Wn ! R defined by

Jn(v) =

In(v)z }| {
1

'n(1)

Z

⌦
�n(|rxv(⇠)|L) d⇠ +

1

 n(1)

Z

⌦
 n(|ryv(⇠)|M ) d⇠

�
Z

⌦
f(⇠)v(⇠) d⇠

| {z }
K(v)

.

• In /2 C
1
(Wn,R), but it is convex, weakly? lower semicontinuous

and coercive. On the other hand, K 2 C
1
(Wn,R) and

hK 0
(v), wi = �

Z

⌦
f(⇠)w(⇠) d⇠, 8 v, w 2 Wn .
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Thus, following Szulkin, we will work with the following
reformulation of problem (29) as a variational inequality

⇢
In(w)� In(vn) + hK 0

(vn), w � vni � 0 8 w 2 Wn,

vn 2 Wn .
(30)

• vn 2 Wn solving problem (30) will be called a variational
solution of problem (29).

A. Szulkin (1986):
Minimax principles for lower semicontinuous functions and
applications to nonlinear boundary value problems,
Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109.



Theorem 3.1.1 [D. S.-D., NA-RWA, 2020]

For each integer n � 1 such that 2  pn  qn, problem (29) has a
unique nonnegative variational solution.

Proof (Existence):
1

lim
kvk1,�n, n!1,

v2Wn

Jn(v) = +1.

2

�1 < cn := inf
w2Wn

Jn(w).

3

9 vn 2 Wn such that Jn(vn) = cn .

Nonnegativity: Note that since Jn(vn) � Jn(|vn|) and Jn

possesses a unique critical point, we must have vn = |vn| � 0.
Thus, for each positive integer n � 1, problem (29) has a unique
nonnegative solution vn 2 Wn provided that pn � 2.
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Asymptotic behaviour

Theorem 3.1.2 [D. S.-D., NA-RWA, 2020]

If lim
n!1

pn = 1 and lim sup
n!1

ln(qn)
pn

< 1, the sequence {vn}

converges uniformly in ⌦ to dista(·, @⌦), where
dista(·, @⌦) : ⌦! [0,1) is defined by

dista(⇠, @⌦) := inf
⌘2@⌦

[|x⇠ � x⌘|L + |y⇠ � y⌘|M ], 8 ⇠ 2 ⌦.

Step 1: The sequence

⇢Z

⌦
vn(⇠) d⇠

�
is bounded.

Step 2: The sequence {vn} is bounded in any W
1,s
0 (⌦) with

s > N .

Step 3: There exists a subsequence of {vn} which converges
uniformly in ⌦ to v1.



Theorem [�-convergence result]

For each integer n � 1 consider the functional
Hn : L

1
(⌦) ! [0,1] defined by

Hn(v) =

⇢
Jn(v), if v 2 Wn,

+1, otherwise .

We have �(L1
(⌦))� lim

n!1
Hn = H, where H : L

1
(⌦) ! [0,1] is

defined by

H(v) =

8
<

:
�
Z

⌦
f(⇠)v(⇠) d⇠, if v 2 Y,

1, otherwise ,

with Y :=

⇢
v 2 W

1,1
(⌦) \

✓ T
s>1

W
1,s
0 (⌦)

◆
;

max{k|rxv(⇠)|LkL1 , k|ryv(⇠)|MkL1}  1 a.e. ⇠ 2 ⌦
�
.



Proposition

Let X be a topological space satisfying the first axiom of
countability, and assume that the sequence {Hn} of functionals
Hn : X ! R, �-converges to H : X ! R. Let zn be a minimizer
for Hn. If zn ! z in X, then z is a minimizer of H, and

H(z) = lim inf
n!1

Hn(zn).

We deduce that v1 must be a minimizer for H and in
particular,

max{k|rxv1|LkL1 , k|ryv1|MkL1}  1 a.e. in ⌦.

J. Jost & X. Li-Jost: Calculus of Variations,
Cambridge University Press, 2008.
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4 Chapter 4: Final comments and further directions of research



An open problem

Let p, q 2 R s.t. 1 < p < q and let 0  a(·) 2 C
0,↵

(⌦), for some
↵ 2 (0, 1). We define the double phase operator by

�
a(·)
p,q u := �pu+ div(a(x)|ru|q�2

N ru), (31)

that has an ellipticity of order p in the gradient in the points x on
the zero set {a(x) = 0}, while it exhibits a q-growth in the
gradient in those points x where a(x) is positive.
We propose to investigate the asymptotic behaviour of the

solutions (as p ! 1, and consequently q ! 1) for
(

��a(·)
p,q u = 1 in ⌦,

u = 0 on @⌦.
(32)

M. Colombo & G. Mingione (2015): Regularity for double
phase variational problems/Bounded minimisers of double
phase variational integrals, Arch. Rational Mech. Anal. 215
/218, 443–496/219–273.



Thank you for your attention!!!


