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@ Chapter 1: Nonlinear eigenvalue problems

On the spectrum of a nontypical eigenvalue problem in R?
The set of eigenvalues of a problem involving Neumann
boundary condition

Eigenvalue problems on general domains

Perturbed fractional eigenvalue problems

The spectrum of an inhomogeneous Baouendi-Grushin type
operator
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1.2. The set of eigenvalues of a problem involving

Neumann boundary condition

Assume 2 C RY (N > 2) is a bounded domain with smooth
boundary 0€2.

We consider the eigenvalue problem

—Apu — Au = Au in Q,
_ ou (1)
p 2 —_— =
<\VU|N + 1) 5 0 on 09,

when p € (1,00) \ {2} is a real number, Aju := div(|Vu|§'\72Vu)
stands for the p-Laplace operator and v denotes the outward unit
normal to Of2.



Background

We consider the problem

—Au=Au in),
0 2
gu _ 0 on 0%, (2)
ov

where v denotes the outward unit normal to 0.

Problem (2) possesses an unbounded sequence of eigenvalues,

more precisely
0= A <A <A <AV <

Consequently, in this case the set of eigenvalues of problem (2) is
discrete.

The first positive eigenvalue of problem

(2) is
/ |Vl da
AV = inf Jo

(3)
ueW12(Q)\{0}, [ u dz=0 / u? dx
Q



We consider the problem

—Apu=Au in £,
4
Vul? % =0 on 99, *)

W|the|therp€((N+2, )\{2}) (I, N) orp> N.

Definition
A € R is an eigenvalue of problem (4), if 3u € W1P(Q) \ {0} s.t.

/ |Vu|§)\72Vchp dr = )\/ up dz, Vo WHP(Q). (5)
Q Q

The set of eigenvalues of problem (4) is the interval [0, c0).




We consider the problem

—Apu — Au = u in €2,
_ ou (6)
p 2 —_—

(\Vu|N + 1) ey 0 on 09,

where p € (1,00)\{2} is a real number.
Definition 1.1

The parameter A € R is an eigenvalue of problem (6) if there exists
u € Whmax{22H(Q) \ {0} such that

/ Va2 2 VuVy da + / VuVe dz — /\/ wp dr =0, (7)
Q Q Q

for all o € Wimax{2r}(Q),




Background

Theorem (M. Mihailescu, CPAA, 2011)
Ifp € (2,00), the set of eigenvalues of problem (6) is given by

{0} U (A (p), 00),

where

/\Vu]?v dx
M (p) = inf o >0

ueWlr(Q)\{0}, /uda: =0 /u2 du
Q Q

8 M. Mih3ilescu (2011),
An eigenvalue problem possessing a continuous family of

eigenvalues plus an isolated eigenvalue,
Comm. on Pure and Applied Analysis 10, 701-708.




The main result on problem (6) in the case p € (1,2) is given by
the following theorem.

Theorem (M. Farcdseanu, M. Mihdilescu, D. S-D, NA, 2015)

Ifp € (1,2), the set of eigenvalues of problem (6) is given by

{0} U (A, 00),

where

/ |Vul|% dz
AV inf S s ()

weWL2(Q)\{0}, / wdz =0 / u? da
Q Q




Case p € (1,2)

Definition
A € R is an eigenvalue of problem (6) if there exists
u € WH2(Q) \ {0} such that

Vull?VuVepde + | VuVepdr — A [ upde=0, (7)
Q N Q Q

for all ¢ € WH2(Q).




Case p € (1,2)

Definition
A € R is an eigenvalue of problem (6) if there exists
u € WH2(Q) \ {0} such that

Vull?VuVepde + | VuVepdr — A [ upde=0, (7)
Q N Q Q

for all ¢ € WH2(Q).

In order to go further, we define
wkquewmmx/umpm}
Q

We recall that
wh(Q) = h @R,



Case p € (1,2)

Every A € (A, 00) is an eigenvalue of problem (6).
1

For each A € (AYY, 00) we define the functional I, : Vo — R by
1 ) 1 » A,
D(u) =< | [Vulyde+— | |[Vulyde— < [ u*dx. (9)
2 Ja pJa 2 Ja

It is standard to prove that Iy € C*(V2\{0},R) with the derivative
given by

(I (u),p) = / VuVp dx +/ V2 2 VuVe da — /\/ uyp dz,
Q Q Q
(10)
Vue Va\{0}, V¢ e Va.
Thus, A is an eigenvalue of problem (6) if and only if I, possesses
a nontrivial critical point.



We define the so-called Nehari manifold by

Ny = {u € Vo\{0} : (I (u), u) = 0}

= {u € Vo\{0} : / V% dz + / |Vull, do = X / u? dw}.
Jo Jo Ja

On N, functional Iy has the following expression

(u) = <; - ;) /Q Vul? da.



Set m := inf I > 0.
et m nf Alu) >

We proceed in 5 steps:

Step 1. N, # 0.

Step 2. Every minimizing sequence for Iy on N, is bounded.
Step 3. m > 0.

Step 4. Ju € Ny s.t. I)(u) =m.

Step 5. u found on step 4 is a critical point for Iy.



@ Chapter 2: The asymptotic behavior of solutions for some
classes of PDEs

2
2

The limiting bevahior of solutions for a class of problems
involving the p-Laplace operator and an exponential term
Convergence of the sequence of solutions for a family of
eigenvalue problems

A limiting problem for a family of eigenvalue problems
involving p-Laplacians

The asymptotic behavior of solutions to a class of
inhomogeneous problems

The limiting behavior of solutions to inhomogeneous
eigenvalue problems in Orlicz-Sobolev spaces

The asymptotic behavior of a class of p-harmonic functions



2.1. A class of problems involving the p-Laplace operator

and an exponential term

Let Q@ ¢ RY (N > 2) is a bounded domain with smooth boundary,

01.
For each p > N, consider the problem
—Apu = Xe*, in
{ u =0, on 0f), (11)J

where A, u = diV(\Vu]?V_QVu).

Definition

We say that u € W, () is a weak solution of problem (11),

/Q IVuR*VuVy de = )\/Qe“go de, YoeW,P(Q). (12)




Theorem (Morrey's inequality)

For each p > N, there exists a positive constant C), such that
17
lullzeo @) < Colll Vulnllr), ¥VueWp™(Q),  (13)

where

N(p+1) N(p—1) N—p? N—p

C,=plBi(0) PN~ 2 (p—1) ¥ (p—N) # A(p)




Furthermore, it is known that

Jim €, = [dist(-, 0Q) || L= (0,

here dist(x,09) := inf |z — v Q.
where dist(z, 09) ylér}m]a: yln, Vo e

[§ F. Charro & E. Parini
Limits as p — oo of p-Laplacian problems with a superdiffusive
power-type nonlinearity: Positive and sign-changing solutions,
J. Math. Anal. Appl. 372 (2010), 629-644.



Background

For each p > NN, there exists a positive real number A, such that
for each A € (0, \p), problem

—Apu = Xe*, in (),
u =0, on 01},

has a weak solution.

@ J. A. Aguilar Crespo and |. Peral Alonso,
On an elliptic equation with exponential growth,
Rend. Sem. Mat. Univ. Padova 96 (1996), 143-175.



Main results

Theorem 2.1.1 [M. Mih3ilescu, D.S.-D., C. Varga, ESAIM COCV,

2018]
There exists a positive real number A\* such that for each
A € (0,X*) and for each p > N, problem (11), namely

—Apu = Ae¥, in (),
u =0, on OS2,

has a nonnegative weak solution.

Theorem 2.1.2 [M. Mih&ilescu, D.S.-D., C. Varga, ESAIM COCV,

2018]

For each A € (0, \*), let u, be the nonnegative solution of problem
(11), given by Theorem 1.2.1. Then {u,} converges uniformly in §2
to dist(-, 9€2) as p — oc.




Background

{ —Apu = f(x), forzeQ, (14)

u =0, for x € 012,
where f € L>®(Q) \ {0} is a positive function.

[§ T. Bhattacharya, E. DiBenedetto, & J. Manfredi, Limits as
p — oo of Apu, = f and related extremal problems,
Rend. Sem. Mat. Univ. Politec. Torino (1991), 15-68.

@ B. Kawohl, On a family of torsional creep problems,
J. Reine Angew. Math. 410 (1990), 1-22.

[§ M. Perez-Llanos & J. D. Rossi, The limit as p(x) — oo of
solutions to the inhomogeneous Dirichlet problem of
p(x)-Laplacian, Nonlinear Analysis 73 (2010), 2027-2035.

[ M. Bocea & M. Mih3ilescu, On a family of inhomogeneous
torsional creep problems, Proceedings of the American
Mathematical Society 145 (2017), 4397-4409.



A subsequence of the solutions u;, > 0 of the family of problems

_Apuzkl(p)‘u|p72u7 n Q,
{ u =0, on 0f2, (15)

converges uniformly in € to a nontrivial and nonnegative viscosity
solution of the limiting problem

u=0 on O0N.

[ P. Juutinen, P. Lindqvist & J. J. Manfredi (1999):
The oo-eigenvalue problem,
Arch. Rational Mech. Anal. 148, 89-105.



Theorem 2.1.1 [M. Mihdilescu, D.S.-D., C. Varga, ESAIM COCV,
2018]

There exists a positive real number A* such that for each
A € (0,A*) and for each p > N, problem (11), namely

—Apu = Xe*, inQ,
u =0, on 0,

has a nonnegative weak solution.




For each A > 0, we introduce the Euler-Lagrange functional
associated to problem (11), i.e. J) : Wol’p(Q) — R given by

1 ,
Ia(u) = / |Vull, dz — )\/ e'dr, Yue VVOLP(Q) :
pJa Q
It is standard to show that J) € Cl(Wol’p(Q),R) and
(J5(u), ¢ :/ Vul??VuVe dr — )\/ e da,
Q Q

for all u, ¢ € WyP(Q).

Remark: Note that the Direct Method in the Calculus of
Variations can not be applied in this case since J) fails to be
coercive.



Lemma 2.1.1

For each A € (0, \), we have

2
2

Ta(u) = 5, ¥ u € WP (Q) with ||| Vulwl|zo) = p/7,

where
* . 1

P 2]9\60177’1/”




Lemma 2.1.1

For each A € (0, \), we have

1 .
M) 23, Yue WP () with [||Vuly| o) = p"/?
where
*x 1
W 2|Q|eCrp'/?
and

1 7/\4"(1)%1) N(p—1) 4\"7;)2 N—p

Co=p|B1(0)| *N_ # (p—1) # (p—N) # \(p) 7 .




Lemma 2.1.1

For each A € (0, \), we have

1 .
M) 23, Yue WP () with [||Vuly| o) = p"/?
where
*x 1
W 2|Q|eCrp'/?
and

1 7/\4"(1)%1) N(p—1) 4\"7;)2 N—p

Co=p|B1(0)| *N_ # (p—1) # (p—N) # \(p) 7 .

Since lim C) = [|dist(:, 9Q)|| () and lim p!/? =1 it follows
pP—00 P—00
that

1
. * __
plir{}o Ap = 2(QelldistC- 0N ros (@) -Y




Consequently, defining

A= pl;lf\ )\p (17)

and taking into account that function

/]Vu|p dx
l,oo)dp — A 1nf
R Ty g

is continuous we deduce that

Ay > A*>0, Vp>N.



For each A € (0,\*) and each p > N, problem (11) has a
nonnegative solution u;, € B := B,1/,(0) which is characterized by

Jx(up) = inf J).
B

The proof of this theorem relies on Ekeland’s Variational Principle.



Fix A € (0,\*) and let u, be the nonnegative solution of problem
(11) given by Theorem 2.1.1. Then there is a subsequence {u,}
which converges uniformly in €2, as p — oo, to some function

Uoo € C(Q) with us > 0 in .

Proof: Fix ¢ > N. For each p > ¢ we have

qa/p
/ V| de - < </ |Vup[R, dm) ]Q|1*q/p < pq/pm’lfq/p
Q Q
(e )@~/ < (V)11 +19) .
Thus, {|Vup|n}p is uniformly bounded in L4(£2).
It follows that there exists a subsequence (not relabeled) of {u,}
and a function us, € C(Q) such that u, — u., weakly in Wy9(Q)

with ¢ > N and u;, = us uniformly in €.
Moreover, u, >0 in €, V p> N = uy > 0in Q.

IN



We assume for a moment that the solutions u, of (11) are

sufficiently smooth so that we can perform the differentiation in
the PDE

—Apuy = —div(|Vu, % *Vu,) = Ae™ in Q,
we get

— \Vup]iszup —(p— 2)\Vup\lj\f4Axup =Xe'? inQ, (18)

N
2
where Au := Trace(D?u) = g;; and
i=1 7"

N
R 2 _ ou Ou _0%u
Axu = (D*uVu,Vu) = > b D Fuide

ij=1
Note that (18) can be rewritten as

Hp(up,Vup,DQUP) =0 in Q,
Hy(y,2,8) == —|2[% *Trace S — (p — 2)|2n|P~4(Sz, 2) — Ae¥,

where y € R, z € RY and S is a real symmetric matrix in MV >N,



Definition of viscosity solution

We give the definition of viscosity solutions for problem

{Hp(u,VU,D2u)20 in Q,

u=~0 on Of). (19)

Definition (M. G. Crandal, H. Ishii, P. L. Lions, BAMS, 1992)

An upper semicontinuous function u :  — R is called a viscosity
subsolution of (19) if u|pn < 0 and, whenever zy € Q and

U € C?(9) are such that u(wg) = ¥(xg) and u(z) < ¥(z) if

x € B(xg,7) \ {zo} for some r > 0, then

Hp(\I/(xo), V\I/(xo), D2\I/(a;0)) < 0.

A lower semicontinuous function u : 2 — R is called a viscosity
supersolution of (19) if u|gg > 0 and, whenever zp € Q and

U € C%(Q) are such that u(zg) = ¥(zg) and u(x) > ¥(z) if

x € B(xg,r) \ {0} for some r > 0, then

H, (Y (z0), V¥(x0), D*¥(x0)) > 0.




A continuous weak solution of (11) is also a viscosity solution of

(11).

Next, we compute the limit of
Hy(up, Vuy, D*uy) =0 in Q

as p — 0o. More exactly, we consider the sequence of viscosity
solutions {u,} and we would like to find out what equation is
satisfied by any cluster point of this sequence, which is .



Limit function

Theorem 2.1.3

Let us, be the function obtained as a uniform limit of a
subsequence of {u,} in Lemma 2.1.2. Then uy is a viscosity
solution of problem

(20)

min{|Vu|y —1,—Axu} =0, in £,
u =0, on 0f2.

V.

It is well-known that equation (20) has as unique solution
dist(+,9€), namely the distance function to the boundary of Q.
The entire sequence u,, converges uniformly to dist(-,d) in €, as
p — 0.

3 R. Jensen,
Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm
of the Gradient,
Arch. Rational Mech. Anal. 123 (1993), 51-74.



© Chapter 3: Torsional Creep Type Problems
@ Anisotropic Torsional Creep Problem
& Torsional creep problems involving Grushin-type operators
& Torsional creep problems in Finsler metrics



3.1. Anisotropic Torsional Creep Problem

“Torsional creep”

the permanent plastic deformation of a material subject to a
torsional moment for an extended period of time and at sufficiently
high temperature.




Let 2 C RY (N > 2) be an open, bounded domain with smooth
boundary, 012.



Let 2 C RY (N > 2) be an open, bounded domain with smooth
boundary, 0.

For each real number p > 1, torsional creep problems are modelled
by the family of equations

{ —Apu=1 in Q (21)

u =0 on 01},

which possess unique solutions denoted by u,, € Wol’p(Q) (actually,
u, € CH(Q)).
¥ L. M. Kachanov: The theory of creep,

Nat. Lending Lib. for Science and Technology, Boston Spa,
Yorkshire, England, 1967.

¥ L. M. Kachanov: Foundations of the theory of plasticity,
North-Holland Publishing Co., Amsterdam-London; American
Elsevier Publishing Co., New York, 1971.



The limit problem of the above family of equations, as p — oo, is
given by

{ min{|Vu|y —1,-Axu} =0 in £, (22)

u =0 on 0,

and it possesses as unique solution the distance function to the
boundary of €, i.e.

dist(z,0Q) := inf |z —y|n, Ve Q.
yeofd

Problem (22) models the perfect plastic torsion.



e Payne & Philippin (1977) showed that

lim up(a:)dx:/dist(x,aQ)dx.
Q Q

pP—00

[§ L. E. Payne & G. A. Philippin (1977):
Some applications of the maximum principle in the problem of

torsional creep,
SIAM J. Appl. Math. 33, 446—455.



e Bhattacharya, DiBenedetto & Manfredi (1991) and Kawohl
(1990) established the uniform convergence of u,, to dist(-,9€2) in
Q.

[§ T. Bhattacharya, E. DiBenedetto, & J. Manfredi (1991):
Limits as p — oo of Apu, = f and related extremal problems,
Rend. Sem. Mat. Univ. Politec. Torino, special issue, 15-68.

[§ B. Kawohl (1990):
On a family of torsional creep problems,
J. Reine Angew. Math. 410, 1-22.



Similar Results on the Topic

e Perez-Llanos & Rossi (2010) investigated the family of equations

(23)

—div(|Vu5r V) =1 in Q,
u =20 on 0,

when p,(-) is a sequence of continuous functions over §2 which
diverges uniformly to infinity in £, as n — oco.

[8 M. Pérez-Llanos & J. D. Rossi (2010):
The limit as p(z) — oo of solutions to the inhomogeneous
Dirichlet problem of p(x)-Laplacian,
Nonlinear Analysis T.M.A. 73, 2027-2035.



Bocea & Mihdilescu (2017) studied the family of problems

1 S n(|Vu\N) . .
{ —div (WVU) =1 in Q’

24
u =0 on 09, (24)

where ¢, € C*(R,R) are odd, increasing homeomorphisms s. t.

__ ton(t)
" (1)

1<y <l <oo, Vt>0 (25)

for some constants . and ¢, with 1 < ¢ < ¢ < oo,
©, — 00 as n — oo, (26)
3 B> 1such that ¢ < B, forall n > 1, (27)
where @,,(t) := fot on(s)ds.

[ M. Bocea & M. Mihiilescu (2017):
On a family of inhomogeneous torsional creep problems,
Proc. Amer. Math. Soc. 145, 4397-4409.



Examples of functions ¢, : R — R which are odd increasing
homeomorphisms from R onto R, and for which (25)-(27) hold.
For more details, the reader is referred to [Clément et al.,
Examples 1-3, page 243].

o <ron(t) - |t|n_2t, n > 1. We have Lp; = 99:; =n;
Q wn(t) =log(1 +[t|™)[t[* 2, n,m > 1. Thus, ¢, =n,
QO:{ =n+m,

@ o.(t) = % ift£20, ¢,(0)=0,n > 2. In this case it

turns out that ¢, =n—1, ¢ =n

v

[ Ph. Clément, B. de Pagter, G. Sweers & F. de Thélin (2004):
Existence of solutions to a semilinear elliptic system through

Orlicz-Sobolev spaces,
Mediterr. J. Math. 1, 241-267.



e Fircdseanu & Mihdilescu (2019) studied the family of problems
(24) with
oult) = paltPn 2

when p,, — oc.

We have

t t
= pp and @, 1= sup #n(?) =0

L ton(t)
= Inf 3, (1) 120 o (t)

Pn

[8 M. Farciseanu & M. MihZilescu (2019):
On a family of torsional creep problems involving rapidly
growing operators in divergence form,
Proceedings of the Royal Society of Edinburgh Section A:
Mathematics 149, 495-510.



Framework

Let L., M and N be three positive integers s.t. L+ M = N.



Framework

Let L., M and N be three positive integers s.t. L+ M = N.
o V¢ RY we write £ = (2,7) € RF x RM with

r=(z1,...,2r) € RF and y = (y1,...,ynr) € RM.



Framework

Let L., M and N be three positive integers s.t. L+ M = N.
o V¢ RY we write £ = (2,7) € RF x RM with

r=(z1,...,2r) € RF and y = (y1,...,ynr) € RM.

Denote by |- |1, | - |as and | - |, the Euclidean norms in RY, RM
and RV, respectively.

For &, = (z,7) € RY and & = (2, 7) € RY with z, & € R and
7, 7 € RM we define the “anisotropic Euclidean distance” on R
as

dn(&1,&2) =T — 2L+ |y — ln - (28)

For u : 2 — R smooth enough we will use the following notations

ou ou ou ou
VZ-'U, = <a$1, ceny m) ,Vyu = <8y1, ceny 8yM> ,Vu = (VxU,VyU)



Our Problem

For each positive integer n let p, and ¢, be two sequences
satisfying 2 < p,, < g, < 00. Define the functions

©n(t) 1= palt|P» 2™ and i, () = gn|t|7 2t



Our Problem

For each positive integer n let p, and ¢, be two sequences
satisfying 2 < p,, < g, < 00. Define the functions

©n(t) 1= palt|P» 2™ and i, () = gn|t|7 2t

Next, for a given continuous function f : Q — (0, 00) consider the
family of anisotropic problems
H @n(‘vTU‘ ) H 1/"VL(|V:UU‘M) _
—div, (F(DIVWLIL qu> — divy (7wn(1)‘vyu|1\l Vyu> =f, Q,
u =0, of.
(29)



Our Problem

For each positive integer n let p, and ¢, be two sequences
satisfying 2 < p,, < g, < 00. Define the functions

©n(t) 1= palt|P» 2™ and i, () = gn|t|7 2t

Next, for a given continuous function f : Q — (0, 00) consider the
family of anisotropic problems
H @n(‘vTU‘ ) H 1/"VL(|V:UU‘M) _
—div, (F(UIVWLIL qu> — divy (7wn(1)‘vyu|1\l Vyu> =f, Q,
u =0, of.
(20)

Our goal is to study the asymptotic behaviour of the solutions for
the family of problems (29) as n — oo (provided that

lim p, = ).

n—oo

Problem (29), due to its anisotropic nature, could represent a
torsion that twists the material depending on the direction of the
variables.



Main results

Theorem 3.1.1 [D. S.-D., NA-RWA, 2020]

For each integer n > 1, problem (29) has a unique (variational)
solution which is nonnegative in €2, say v,,.

Theorem 3.1.2 [D. S.-D., NA-RWA, 2020]

If
|
lim p, = oo and limsup 1(4n)
n—00 n—00 Pn

< 09,

the sequence {v,,} converges uniformly in §2 to dist,(-, 9€2),
where disty, (-, 02) : Q — [0, 00) is defined by

dist, (&, 09) = nlenf l|lze — xnlL + lye — ynlm], ¥V €€




Orlicz-Sobolev space

We define the anisotropic Orlicz-Sobolev space
WhEnYn(Q) i={u e LY"(Q) : |Vaulp € LP(Q), |Vyulu € LY(Q)}

endowed with the norm || - ||1.¢, v, , where L®»(Q) and LY"(Q)
are Orlicz spaces coresponding to ®,,,¥,, : R — R,

t

and

U, (t) = /Ot Yn(s) ds = el — 1,



Orlicz-Sobolev space

We define the anisotropic Orlicz-Sobolev space
WhEnYn(Q) i={u e LY"(Q) : |Vaulp € LP(Q), |Vyulu € LY(Q)}

endowed with the norm || - ||1.¢, v, , where L®»(Q) and LY"(Q)
are Orlicz spaces coresponding to ®,,,¥,, : R — R,

t

and

U, (t) = /Ot Yn(s) ds = el — 1,

o (WHen¥n(Q), |- |l1,0,,w,) is a Banach space which is not
reflexive, but is the dual of a separable Banach space.



We introduce

Wy i= W0 (0) 0 (N W3 (9))

e W, is a linear closed subspace of W1 ®n:¥n ().

e if {u,} is a bounded sequence in W1®n¥n(Q), then it contains
a subsequence which converges in the sense of the weak* topology
to some u € W,.



We introduce

Wy i= W0 (0) 0 (N W3 (9))

e W, is a linear closed subspace of W1 ®n:¥n ().

e if {u,} is a bounded sequence in W1®n¥n(Q), then it contains
a subsequence which converges in the sense of the weak* topology
to some u € W,.

The Euler-Lagrange functional associated to the problem (29) is
Jn : Wy, — R defined by

1

T = / A(F20()]2)

- [ et

1
Un(1) /Q‘I’nﬂvyv(s)m e



The Euler-Lagrange functional associated to the problem (29) is
Jn : W, — R defined by

I, (v)
1 ' 1 '
@) = g5 | @190 s+ s [ 990l de
- [ fernte) ag




The Euler-Lagrange functional associated to the problem (29) is
Jn : W, — R defined by

I, (v)
1 ' 1 '
Jn(v) = on(1) /Q @, (|Vav(§)|L) dE + m /O \I’n(|vy7’<€)‘M) dg
S RIGLGL:
Q
K(v)

o I, ¢ C1(W,,R), but it is convex, weakly* lower semicontinuous

Y

and coercive. On the other hand, K € C*(W,,,R) and

(K'(v),w) = —/Qf(ﬁ)w(f) ¢, VYov, weWw,.



Thus, following Szulkin, we will work with the following
reformulation of problem (29) as a variational inequality

{ In(w) — In(vy) + (K'(v),w —vy) >0 Ywe W, (30)

vy, € Wy, .

e v, € W, solving problem (30) will be called a variational
solution of problem (29).

8 A. Szulkin (1986):
Minimax principles for lower semicontinuous functions and
applications to nonlinear boundary value problems,
Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77-109.
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Theorem 3.1.1 [D. S.-D., NA-RWA, 2020]

For each integer n > 1 such that 2 < p,, < g, problem (29) has a
unique nonnegative variational solution.

Proof (Existence):
o
Jn(v) = 400
||U||11<I)n7‘1’n4>oo7
veW,
2]
—00 < ¢ 1= ujgnmf/n In(w).
o

J v, € W, such that J,(v,) = ¢, .

Nonnegativity: Note that since J,,(v,) > Jp,(|vn|) and J,
possesses a unique critical point, we must have v,, = |v,| > 0.
Thus, for each positive integer n > 1, problem (29) has a unique
nonnegative solution v,, € W,, provided that p, > 2,



Asymptotic behaviour

Theorem 3.1.2 [D. S.-D., NA-RWA, 2020]

If hm 0 pp = 00 and lim sup — (q") < o0, the sequence {v,}
n—oo

converges uniformly in € to dlSta( , 082), where
dista (-, 0€2) : Q@ — [0, 00) is defined by

dist, (&, 092) = 771nf llxe — xn|L + lye — ynlm], Y€ € Q.

Step 1: The sequence {/ vn(€) dﬁ} is bounded.
Q

Step 2: The sequence {v,} is bounded in any W,*(€2) with
s> N.

Step 3: There exists a subsequence of {v,} which converges
uniformly in € to V.



Theorem [I’-convergence result]

For each integer n > 1 consider the functional
H,, : L'(Q2) — [0, oc] defined by

Jn(v), ifve Wy,
400, otherwise.

H,(0) = {

We have T'(LY(Q)) — li_>m H, = H, where H : L'(Q2) — [0, 0] is
defined by

R Y N (GG T ¢

otherwise ,

with YV := {v e Whe(Q)n <SQ1 W&’S(Q)> ;

maxc{[|Vo0(€)|z e, [ Vyu()larllz=} < Lae £ € Q}



Proposition

Let X be a topological space satisfying the first axiom of
countability, and assume that the sequence {H,,} of functionals
H, : X = R, I'-converges to H : X — R. Let z, be a minimizer
for H,,. If z,, — z in X, then z is a minimizer of H, and

H(z) = liminf H,(z,).

n—o0

¥ J. Jost & X. Li-Jost: Calculus of Variations,
Cambridge University Press, 2008.



Proposition

Let X be a topological space satisfying the first axiom of
countability, and assume that the sequence {H,,} of functionals
H, : X = R, I'-converges to H : X — R. Let z, be a minimizer
for H,,. If z,, — z in X, then z is a minimizer of H, and

H(z) = liminf H,(z,).

n—o0

We deduce that v, must be a minimizer for H and in
particular,

max{ || Vavee L]l || Vyvae|arll e} < 1 ace. in Q.

¥ J. Jost & X. Li-Jost: Calculus of Variations,
Cambridge University Press, 2008.



© Chapter 4: Final comments and further directions of research



An open problem

Let p,g € Rst. 1 <p<qandlet0<a(-)ecC"Q), for some
a € (0,1). We define the double phase operator by

A;g)u = Apu + div(a(x)\VuﬁV*QVu), (31)
that has an ellipticity of order p in the gradient in the points x on
the zero set {a(x) = 0}, while it exhibits a g-growth in the
gradient in those points = where a(z) is positive.

We propose to investigate the asymptotic behaviour of the
solutions (as p — oo, and consequently ¢ — o) for

—Ag(q')u =1 inQ
) ? 2
{ u=20 on 0f2. (32)

[ M. Colombo & G. Mingione (2015): Regularity for double
phase variational problems/Bounded minimisers of double
phase variational integrals, Arch. Rational Mech. Anal. 215
/218, 443-496/219-273.



Thank you for your attention!!!



