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Abstract

0.1 Contributions of this thesis
Consider the Euclidean space Rn endowed with the usual scalar product 〈x, y〉 = xTy and the
corresponding norm ‖x‖ =

√
〈x, x〉1. Optimization problems from this thesis are variants of the

following stochastic problem with the objective function expressed in the composite form:

min
x∈domF

F (x) := E [f(x, ξ) + g(x, ξ)] , (1)

where ξ is a random variable over a probability space (Ω,F ,P). Moreover, the functions f :
Rn×Ω→ R̄ and g : Rn×Ω→ R̄ are proper, lower semicontinuous, convex in the first argument.
The randomness in most of the practical optimization applications led the stochastic optimization
field to become an essential tool for many applied mathematics areas, such as machine learning
and statistics, control and signal processing, sensor networks and others. The main issue with
the stochastic problem (1) is that we cannot evaluate the (sub)gradient ∇F (x) of function F in
a point x ∈ domF , that is we cannot have access to the subdifferential ∂F (x). On the other
hand, for a given sample ξ̂ of random variable ξ, we can easily compute f(x, ξ̂), g(x, ξ̂) and the
(sub)gradients ∇f(x, ξ̂),∇g(x, ξ̂), respectively. In this thesis we assume that the (sub)gradients
∇f(x, ξ̂),∇g(x, ξ̂) are unbiased estimators, i.e.:

E [∇f(x, ξ) +∇g(x, ξ)] ∈ ∂F (x).

Note that the optimization problem (1) is very general and covers many applications from engi-
neering, statistics and machine learning.

A particular case of stochastic problem (1) is g ≡ 0 and thus F (x) = E [f(x, ξ)]. This is the
typical problem arising in machine learning applications. In this case, the most used algorithm
for solving such a problem is the stochastic gradient descent (SGD) proposed for the first time
by Robbins and Monro2:

xk+1 = xk − αk∇f(xk, ξk),

where ξk is a sample of the random variable ξ (i.e., ξk ∼ P) and in order to ensure convergence
of this stochastic iterative process the stepsize αk must be chosen as

αk =
α0

kγ
, where α0 > 0 and γ ∈ [0, 1].

In general, SGD has slow convergence and thus one of the main research directions in this field,
especially in the present era of Big Data, is designing accelerated variants of this algorithm.

1Most of the results of this thesis can be easily extended to more general spaces.
2H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical Statistics, 1951.
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Experimentally, it has been observed that minibatch stochastic gradient descent performs better:

xk+1 = xk − αk
1

|Jk|
∑
ξ∈Jk

∇f(xk, ξ),

where the minibatch sample Jk ⊂ Ω has cardinality |Jk| > 1. However, minibatch SGD may
exhibit speedup saturation beyond a particular batchsize, as one can notice from Figure 13. In
particular, for large batches we may need a larger number of passes over the dataset, resulting
in overall slower computation. Hence, there is an open problem in stochastic optimization to
explain when minibatching works. More precisely, one needs to explain mathematically why
and when minibatching works in SGD and also to identify the optimal minibach size.

Figure 1: Behavior of SGD as a function of minibatch size.

In this thesis we answer (partially) to this yet unsolved problem, deriving conditions when mini-
batching works for Kaczmarz algorithm in Chapter 3 (recall that Kaczmarz coincides with SGD
when one considers the linear least-squares problem), we continue with alternating projection
methods for convex feasibility problems in Chapter 4 and Chapter 5 and finally with a stochastic
subgradient with alternating projections algorithm for solving optimization problems with many
functional constraints in Chapter 7.

In particular, in Chapter 3 we prove that a stochastic minibatch Kaczmarz algorithm, that uses at
each step a random subset of the constraints and extrapolated stepsizes, has linear convergence,
with a rate depending on the geometric properties of the matrix and its submatrices and on the
size of the blocks. Our convergence analysis reveals that the algorithm is most effective when
it is given a good sampling of the rows into well-conditioned submatrices. Besides providing a
general framework for the design and analysis of stochastic block Kaczmarz methods, our results
resolve an open problem in the literature related to the theoretical understanding of observed
practical efficiency of extrapolated block Kaczmarz methods. Our framework allows to also
identify the optimal minibatch size.

In Chapter 4 we present a family of stochastic projection methods for solving the convex feasi-
bility problem with (possibly) infinite intersection of sets. We prove that under a stochastic linear
regularity condition, the algorithms converge linearly, with a rate that has a natural interpretation
as a condition number of the stochastic optimization reformulation of the convex feasibility prob-
lem and that depends explicitly on the number of sets sampled. This condition number depends
on the linear regularity constant and an additional key constant which can be interpreted as a Lip-
schitz constant of the gradient of the stochastic optimization reformulation. We have identified

3Courtesy of Yin et al. 2018.



the Lipschitz constant as the key quantity determining whether extrapolation helps or not, and
how much. In Chapter 5, we extend these results to convex feasibility problems, where each set
from the intersection is specified algebraically as a convex inequality, where the associated con-
vex function is general (possibly non-differentiable). In this case, the algorithm does not require
computation of projections but subgradient updates. For these minibatch stochastic subgradient-
based projection methods we also derive sufficient conditions under which the convergence rates
depend explicitly on the minibatch size. To the best of our knowledge, these works are the first
deriving conditions that show theoretically when minibatch stochastic projection updates have a
better complexity than their single-sample variants.

In Chapter 7 we consider convex optimization problems with (possibly) infinite intersection of
constraints, each one given as the level set of a convex but not necessarily differentiable function.
For these settings we propose stochastic subgradient algorithms where we first take a subgradient
step aimed at only minimizing the objective function and then a subsequent subgradient step
minimizing the feasibility violation of the observed minibatch of constraints. For extrapolated
stepsizes, we prove linear convergence rates that depend explicitly on the minibatch size and
show when minibatching helps a subgradient scheme with random feasibility updates.

On the other hand, the convergence theory for SGD has been derived for simple stochastic op-
timization models satisfying restrictive assumptions, the rates are in general sublinear and hold
only for specific decreasing stepsizes. For example, the convergence theory treats separately
smooth or non-smooth objective functions, although the convergence rates are the same for these
two cases, and covers usually unconstrained optimization models, i.e. g ≡ 0. However, in many
applications we have regularization terms or constraints which lead to the optimization problem
(1), i.e. g 6≡ 0. Convergence analysis of SGD to more general problems, e.g. optimization
problem (1), has not been given yet. Therefore, in the second part of this thesis we extend the
convergence analysis of stochastic first order methods to the more general problem (1).

First, we extend the convergence analysis of SGD to optimization problems with many (possibly
infinite) constraints, where each constraint is expressed either through a convex set (Chapter 6)
or through a convex function (Chapter 7). In this case, each individual function g in (1) denotes
the indicator function of one set from the intersection defining the feasible set. Moreover, al-
though SGD has cheap iteration and its practical performance may be satisfactory under certain
circumstances, there is recent evidence of its convergence difficulties and instability for unappro-
priate choice of parameters. To avoid some of these drawbacks of SGD, we consider a stochastic
proximal point (SPP) algorithm, which is more robust w.r.t. parameters, see Chapter 6. For this
method we derive sublinear convergence rates when the objective function is convex or strongly
convex, smooth or nonsmooth.

In Chapter 8, we present a general framework for the convergence analysis of stochastic first
order algorithms (SGD and SPP) which is based on the assumptions that the objective function
satisfies a stochastic bounded gradient condition, with or without a quadratic functional growth
property. These conditions include the most well-known classes of objective functions analyzed
in the literature: nonsmooth Lipschitz functions and composition of a (potentially) nonsmooth
function and a smooth function, with or without strong convexity. Based on this framework we
derive a common convergence analysis for these stochastic first order methods. Moreover, our
convergence rates are optimal for the classes of problems we consider.

In the last chapter we present some research directions that we will consider in our future work.

Finally, note that all the algorithms from this thesis have been tested numerically on concrete
applications, using synthetic or real data, and compared with other state of the art methods from



literature. The numerical results either confirm the theoretical ones or they show the superior
performance of our methods.

0.2 Articles in ISI journals
The material that is presented in this thesis has been published, or accepted for publication, in
top journals. We detail below the main publications from this thesis published in the last 3 years.

• I. Necoara, Faster randomized block Kaczmarz algorithms, Siam Journal on Matrix Anal-
ysis and Applications, vol. 40, nr. 4, 1425–1452, 2019 (Q1 if/ais - Applied Mathematics).

• I. Necoara, P. Richtarik, A. Patrascu, Randomized projection methods for convex feasibil-
ity problems: Conditioning and convergence rates, Siam Journal on Optimization, vol. 29,
nr. 4, 2814–2852, 2019 (Q1 if/ais - Applied Mathematics).

• I. Necoara, A. Nedich, Minibatch stochastic subgradient-based projection algorithms for
solving convex inequalities, partially accepted in Computational Optimization and Appli-
cations, 2020 (Q1 if/ais - Applied Mathematics).

• A. Nedich, I. Necoara, Random minibatch subgradient algorithms for convex problems
with functional constraints, Applied Mathematics and Optimization, vol. 80, nr. 3, 801–
833, 2019 (Q1 if/ais - Applied Mathematics).

• A. Patrascu, I. Necoara, Nonasymptotic convergence of stochastic proximal point methods
for constrained convex optimization, Journal of Machine Learning Research, vol. 18, no.
198, 1–42, 2018 (Q1 if/ais - Automation & Control Systems).

• I. Necoara, General convergence analysis of stochastic first order methods for composite
optimization, Journal of Optimization Theory and Applications, doi: 10.1007/s10957-021-
01821-2, 2021 (Q2 if/ais - Applied Mathematics).

In two papers from the above list I am the single author, other two are joint works with a former
phd student (A. Patrascu) and other two papers are joint collaborations with prof. A. Nedich
from Arizona State University (USA).
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